MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssuni2 Structured version   Visualization version   GIF version

Theorem intssuni2 4901
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni2 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)

Proof of Theorem intssuni2
StepHypRef Expression
1 intssuni 4898 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
2 uniss 4844 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2sylan9ssr 3931 1 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wne 2942  wss 3883  c0 4253   cuni 4836   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-uni 4837  df-int 4877
This theorem is referenced by:  rintn0  5034  fival  9101  mremre  17230  submre  17231  lssintcl  20141  iundifdifd  30802  iundifdif  30803  bj-ismoored2  35206  bj-ismooredr2  35208  ismrcd1  40436
  Copyright terms: Public domain W3C validator