MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssuni2 Structured version   Visualization version   GIF version

Theorem intssuni2 4978
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni2 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)

Proof of Theorem intssuni2
StepHypRef Expression
1 intssuni 4975 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
2 uniss 4920 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2sylan9ssr 4010 1 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wne 2938  wss 3963  c0 4339   cuni 4912   cint 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-v 3480  df-dif 3966  df-ss 3980  df-nul 4340  df-uni 4913  df-int 4952
This theorem is referenced by:  rintn0  5114  fival  9450  mremre  17649  submre  17650  lssintcl  20980  iundifdifd  32582  iundifdif  32583  bj-ismoored2  37091  bj-ismooredr2  37093  ismrcd1  42686
  Copyright terms: Public domain W3C validator