MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssuni2 Structured version   Visualization version   GIF version

Theorem intssuni2 4967
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni2 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)

Proof of Theorem intssuni2
StepHypRef Expression
1 intssuni 4964 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
2 uniss 4907 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2sylan9ssr 3988 1 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wne 2932  wss 3940  c0 4314   cuni 4899   cint 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-v 3468  df-dif 3943  df-in 3947  df-ss 3957  df-nul 4315  df-uni 4900  df-int 4941
This theorem is referenced by:  rintn0  5102  fival  9402  mremre  17546  submre  17547  lssintcl  20800  iundifdifd  32228  iundifdif  32229  bj-ismoored2  36445  bj-ismooredr2  36447  ismrcd1  41891
  Copyright terms: Public domain W3C validator