MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssuni2 Structured version   Visualization version   GIF version

Theorem intssuni2 4997
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni2 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)

Proof of Theorem intssuni2
StepHypRef Expression
1 intssuni 4994 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
2 uniss 4939 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2sylan9ssr 4023 1 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wne 2946  wss 3976  c0 4352   cuni 4931   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-uni 4932  df-int 4971
This theorem is referenced by:  rintn0  5132  fival  9481  mremre  17662  submre  17663  lssintcl  20985  iundifdifd  32584  iundifdif  32585  bj-ismoored2  37074  bj-ismooredr2  37076  ismrcd1  42654
  Copyright terms: Public domain W3C validator