Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intssuni2 | Structured version Visualization version GIF version |
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
intssuni2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssuni 4898 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
2 | uniss 4844 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | sylan9ssr 3931 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ≠ wne 2942 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-uni 4837 df-int 4877 |
This theorem is referenced by: rintn0 5034 fival 9101 mremre 17230 submre 17231 lssintcl 20141 iundifdifd 30802 iundifdif 30803 bj-ismoored2 35206 bj-ismooredr2 35208 ismrcd1 40436 |
Copyright terms: Public domain | W3C validator |