Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intssuni2 | Structured version Visualization version GIF version |
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
intssuni2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssuni 4918 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
2 | uniss 4860 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | sylan9ssr 3946 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ≠ wne 2940 ⊆ wss 3898 ∅c0 4269 ∪ cuni 4852 ∩ cint 4894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3443 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4270 df-uni 4853 df-int 4895 |
This theorem is referenced by: rintn0 5056 fival 9269 mremre 17410 submre 17411 lssintcl 20332 iundifdifd 31188 iundifdif 31189 bj-ismoored2 35392 bj-ismooredr2 35394 ismrcd1 40790 |
Copyright terms: Public domain | W3C validator |