| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intssuni2 | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.) |
| Ref | Expression |
|---|---|
| intssuni2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intssuni 4937 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
| 2 | uniss 4882 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | sylan9ssr 3964 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ≠ wne 2926 ⊆ wss 3917 ∅c0 4299 ∪ cuni 4874 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3920 df-ss 3934 df-nul 4300 df-uni 4875 df-int 4914 |
| This theorem is referenced by: rintn0 5076 fival 9370 mremre 17572 submre 17573 lssintcl 20877 iundifdifd 32497 iundifdif 32498 bj-ismoored2 37103 bj-ismooredr2 37105 ismrcd1 42693 |
| Copyright terms: Public domain | W3C validator |