![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intssuni2 | Structured version Visualization version GIF version |
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
intssuni2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssuni 4978 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
2 | uniss 4921 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | sylan9ssr 3994 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ≠ wne 2930 ⊆ wss 3947 ∅c0 4325 ∪ cuni 4913 ∩ cint 4954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-v 3464 df-dif 3950 df-ss 3964 df-nul 4326 df-uni 4914 df-int 4955 |
This theorem is referenced by: rintn0 5117 fival 9455 mremre 17617 submre 17618 lssintcl 20941 iundifdifd 32482 iundifdif 32483 bj-ismoored2 36815 bj-ismooredr2 36817 ismrcd1 42355 |
Copyright terms: Public domain | W3C validator |