MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssuni2 Structured version   Visualization version   GIF version

Theorem intssuni2 4904
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni2 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)

Proof of Theorem intssuni2
StepHypRef Expression
1 intssuni 4901 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
2 uniss 4847 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2sylan9ssr 3935 1 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wne 2943  wss 3887  c0 4256   cuni 4839   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-uni 4840  df-int 4880
This theorem is referenced by:  rintn0  5038  fival  9171  mremre  17313  submre  17314  lssintcl  20226  iundifdifd  30901  iundifdif  30902  bj-ismoored2  35279  bj-ismooredr2  35281  ismrcd1  40520
  Copyright terms: Public domain W3C validator