MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssuni2 Structured version   Visualization version   GIF version

Theorem intssuni2 4926
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni2 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)

Proof of Theorem intssuni2
StepHypRef Expression
1 intssuni 4923 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
2 uniss 4869 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2sylan9ssr 3952 1 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wne 2925  wss 3905  c0 4286   cuni 4861   cint 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3440  df-dif 3908  df-ss 3922  df-nul 4287  df-uni 4862  df-int 4900
This theorem is referenced by:  rintn0  5061  fival  9321  mremre  17524  submre  17525  lssintcl  20885  iundifdifd  32523  iundifdif  32524  bj-ismoored2  37081  bj-ismooredr2  37083  ismrcd1  42671
  Copyright terms: Public domain W3C validator