MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssuni2 Structured version   Visualization version   GIF version

Theorem intssuni2 4921
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni2 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)

Proof of Theorem intssuni2
StepHypRef Expression
1 intssuni 4918 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
2 uniss 4860 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2sylan9ssr 3946 1 ((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wne 2940  wss 3898  c0 4269   cuni 4852   cint 4894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-v 3443  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4270  df-uni 4853  df-int 4895
This theorem is referenced by:  rintn0  5056  fival  9269  mremre  17410  submre  17411  lssintcl  20332  iundifdifd  31188  iundifdif  31189  bj-ismoored2  35392  bj-ismooredr2  35394  ismrcd1  40790
  Copyright terms: Public domain W3C validator