![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intssuni2 | Structured version Visualization version GIF version |
Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
intssuni2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssuni 4975 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
2 | uniss 4920 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | sylan9ssr 4010 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ≠ wne 2938 ⊆ wss 3963 ∅c0 4339 ∪ cuni 4912 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-v 3480 df-dif 3966 df-ss 3980 df-nul 4340 df-uni 4913 df-int 4952 |
This theorem is referenced by: rintn0 5114 fival 9450 mremre 17649 submre 17650 lssintcl 20980 iundifdifd 32582 iundifdif 32583 bj-ismoored2 37091 bj-ismooredr2 37093 ismrcd1 42686 |
Copyright terms: Public domain | W3C validator |