MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrerintcl Structured version   Visualization version   GIF version

Theorem mrerintcl 17517
Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mrerintcl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (𝑋 𝑆) ∈ 𝐶)

Proof of Theorem mrerintcl
StepHypRef Expression
1 rint0 4941 . . . 4 (𝑆 = ∅ → (𝑋 𝑆) = 𝑋)
21adantl 481 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑆 = ∅) → (𝑋 𝑆) = 𝑋)
3 mre1cl 17514 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
43ad2antrr 726 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑆 = ∅) → 𝑋𝐶)
52, 4eqeltrd 2828 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑆 = ∅) → (𝑋 𝑆) ∈ 𝐶)
6 simp2 1137 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)
7 mresspw 17512 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
873ad2ant1 1133 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋)
96, 8sstrd 3948 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ⊆ 𝒫 𝑋)
10 simp3 1138 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ≠ ∅)
11 rintn0 5061 . . . . 5 ((𝑆 ⊆ 𝒫 𝑋𝑆 ≠ ∅) → (𝑋 𝑆) = 𝑆)
129, 10, 11syl2anc 584 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → (𝑋 𝑆) = 𝑆)
13 mreintcl 17515 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)
1412, 13eqeltrd 2828 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → (𝑋 𝑆) ∈ 𝐶)
15143expa 1118 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑆 ≠ ∅) → (𝑋 𝑆) ∈ 𝐶)
165, 15pm2.61dane 3012 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (𝑋 𝑆) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553   cint 4899  cfv 6486  Moorecmre 17502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-mre 17506
This theorem is referenced by:  mreacs  17582  topmtcl  36339
  Copyright terms: Public domain W3C validator