Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrerintcl | Structured version Visualization version GIF version |
Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
mrerintcl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rint0 4933 | . . . 4 ⊢ (𝑆 = ∅ → (𝑋 ∩ ∩ 𝑆) = 𝑋) | |
2 | 1 | adantl 482 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → (𝑋 ∩ ∩ 𝑆) = 𝑋) |
3 | mre1cl 17377 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
4 | 3 | ad2antrr 723 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → 𝑋 ∈ 𝐶) |
5 | 2, 4 | eqeltrd 2837 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
6 | simp2 1136 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ 𝐶) | |
7 | mresspw 17375 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | |
8 | 7 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋) |
9 | 6, 8 | sstrd 3940 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ 𝒫 𝑋) |
10 | simp3 1137 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
11 | rintn0 5050 | . . . . 5 ⊢ ((𝑆 ⊆ 𝒫 𝑋 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆) | |
12 | 9, 10, 11 | syl2anc 584 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆) |
13 | mreintcl 17378 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) | |
14 | 12, 13 | eqeltrd 2837 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
15 | 14 | 3expa 1117 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
16 | 5, 15 | pm2.61dane 3029 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∩ cin 3895 ⊆ wss 3896 ∅c0 4266 𝒫 cpw 4544 ∩ cint 4891 ‘cfv 6465 Moorecmre 17365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-iota 6417 df-fun 6467 df-fv 6473 df-mre 17369 |
This theorem is referenced by: mreacs 17441 topmtcl 34622 |
Copyright terms: Public domain | W3C validator |