Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrerintcl | Structured version Visualization version GIF version |
Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
mrerintcl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rint0 4918 | . . . 4 ⊢ (𝑆 = ∅ → (𝑋 ∩ ∩ 𝑆) = 𝑋) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → (𝑋 ∩ ∩ 𝑆) = 𝑋) |
3 | mre1cl 17220 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
4 | 3 | ad2antrr 722 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → 𝑋 ∈ 𝐶) |
5 | 2, 4 | eqeltrd 2839 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
6 | simp2 1135 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ 𝐶) | |
7 | mresspw 17218 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | |
8 | 7 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋) |
9 | 6, 8 | sstrd 3927 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ 𝒫 𝑋) |
10 | simp3 1136 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
11 | rintn0 5034 | . . . . 5 ⊢ ((𝑆 ⊆ 𝒫 𝑋 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆) | |
12 | 9, 10, 11 | syl2anc 583 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆) |
13 | mreintcl 17221 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) | |
14 | 12, 13 | eqeltrd 2839 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
15 | 14 | 3expa 1116 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
16 | 5, 15 | pm2.61dane 3031 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∩ cint 4876 ‘cfv 6418 Moorecmre 17208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-mre 17212 |
This theorem is referenced by: mreacs 17284 topmtcl 34479 |
Copyright terms: Public domain | W3C validator |