| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrerintcl | Structured version Visualization version GIF version | ||
| Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| mrerintcl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rint0 4955 | . . . 4 ⊢ (𝑆 = ∅ → (𝑋 ∩ ∩ 𝑆) = 𝑋) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → (𝑋 ∩ ∩ 𝑆) = 𝑋) |
| 3 | mre1cl 17562 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 4 | 3 | ad2antrr 726 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → 𝑋 ∈ 𝐶) |
| 5 | 2, 4 | eqeltrd 2829 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
| 6 | simp2 1137 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ 𝐶) | |
| 7 | mresspw 17560 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | |
| 8 | 7 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋) |
| 9 | 6, 8 | sstrd 3960 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ 𝒫 𝑋) |
| 10 | simp3 1138 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
| 11 | rintn0 5076 | . . . . 5 ⊢ ((𝑆 ⊆ 𝒫 𝑋 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆) |
| 13 | mreintcl 17563 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) | |
| 14 | 12, 13 | eqeltrd 2829 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
| 15 | 14 | 3expa 1118 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
| 16 | 5, 15 | pm2.61dane 3013 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 ∩ cint 4913 ‘cfv 6514 Moorecmre 17550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-mre 17554 |
| This theorem is referenced by: mreacs 17626 topmtcl 36358 |
| Copyright terms: Public domain | W3C validator |