![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrerintcl | Structured version Visualization version GIF version |
Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
mrerintcl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rint0 5012 | . . . 4 ⊢ (𝑆 = ∅ → (𝑋 ∩ ∩ 𝑆) = 𝑋) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → (𝑋 ∩ ∩ 𝑆) = 𝑋) |
3 | mre1cl 17652 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
4 | 3 | ad2antrr 725 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → 𝑋 ∈ 𝐶) |
5 | 2, 4 | eqeltrd 2844 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
6 | simp2 1137 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ 𝐶) | |
7 | mresspw 17650 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | |
8 | 7 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋) |
9 | 6, 8 | sstrd 4019 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ 𝒫 𝑋) |
10 | simp3 1138 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
11 | rintn0 5132 | . . . . 5 ⊢ ((𝑆 ⊆ 𝒫 𝑋 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆) | |
12 | 9, 10, 11 | syl2anc 583 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆) |
13 | mreintcl 17653 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) | |
14 | 12, 13 | eqeltrd 2844 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
15 | 14 | 3expa 1118 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
16 | 5, 15 | pm2.61dane 3035 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ∩ cint 4970 ‘cfv 6573 Moorecmre 17640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-mre 17644 |
This theorem is referenced by: mreacs 17716 topmtcl 36329 |
Copyright terms: Public domain | W3C validator |