MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrerintcl Structured version   Visualization version   GIF version

Theorem mrerintcl 17494
Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mrerintcl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (𝑋 𝑆) ∈ 𝐶)

Proof of Theorem mrerintcl
StepHypRef Expression
1 rint0 4933 . . . 4 (𝑆 = ∅ → (𝑋 𝑆) = 𝑋)
21adantl 481 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑆 = ∅) → (𝑋 𝑆) = 𝑋)
3 mre1cl 17491 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
43ad2antrr 726 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑆 = ∅) → 𝑋𝐶)
52, 4eqeltrd 2831 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑆 = ∅) → (𝑋 𝑆) ∈ 𝐶)
6 simp2 1137 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)
7 mresspw 17489 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
873ad2ant1 1133 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋)
96, 8sstrd 3940 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ⊆ 𝒫 𝑋)
10 simp3 1138 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆 ≠ ∅)
11 rintn0 5052 . . . . 5 ((𝑆 ⊆ 𝒫 𝑋𝑆 ≠ ∅) → (𝑋 𝑆) = 𝑆)
129, 10, 11syl2anc 584 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → (𝑋 𝑆) = 𝑆)
13 mreintcl 17492 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → 𝑆𝐶)
1412, 13eqeltrd 2831 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶𝑆 ≠ ∅) → (𝑋 𝑆) ∈ 𝐶)
15143expa 1118 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) ∧ 𝑆 ≠ ∅) → (𝑋 𝑆) ∈ 𝐶)
165, 15pm2.61dane 3015 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → (𝑋 𝑆) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cin 3896  wss 3897  c0 4278  𝒫 cpw 4545   cint 4892  cfv 6476  Moorecmre 17479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-mre 17483
This theorem is referenced by:  mreacs  17559  topmtcl  36397
  Copyright terms: Public domain W3C validator