| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrerintcl | Structured version Visualization version GIF version | ||
| Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| mrerintcl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rint0 4940 | . . . 4 ⊢ (𝑆 = ∅ → (𝑋 ∩ ∩ 𝑆) = 𝑋) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → (𝑋 ∩ ∩ 𝑆) = 𝑋) |
| 3 | mre1cl 17504 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 4 | 3 | ad2antrr 726 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → 𝑋 ∈ 𝐶) |
| 5 | 2, 4 | eqeltrd 2833 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 = ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
| 6 | simp2 1137 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ 𝐶) | |
| 7 | mresspw 17502 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | |
| 8 | 7 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋) |
| 9 | 6, 8 | sstrd 3941 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ 𝒫 𝑋) |
| 10 | simp3 1138 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
| 11 | rintn0 5061 | . . . . 5 ⊢ ((𝑆 ⊆ 𝒫 𝑋 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆) |
| 13 | mreintcl 17505 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) | |
| 14 | 12, 13 | eqeltrd 2833 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
| 15 | 14 | 3expa 1118 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) ∧ 𝑆 ≠ ∅) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
| 16 | 5, 15 | pm2.61dane 3016 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4551 ∩ cint 4899 ‘cfv 6489 Moorecmre 17492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-mre 17496 |
| This theorem is referenced by: mreacs 17572 topmtcl 36479 |
| Copyright terms: Public domain | W3C validator |