MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrerintcl Structured version   Visualization version   GIF version

Theorem mrerintcl 17545
Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mrerintcl ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢) β†’ (𝑋 ∩ ∩ 𝑆) ∈ 𝐢)

Proof of Theorem mrerintcl
StepHypRef Expression
1 rint0 4993 . . . 4 (𝑆 = βˆ… β†’ (𝑋 ∩ ∩ 𝑆) = 𝑋)
21adantl 480 . . 3 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢) ∧ 𝑆 = βˆ…) β†’ (𝑋 ∩ ∩ 𝑆) = 𝑋)
3 mre1cl 17542 . . . 4 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ 𝑋 ∈ 𝐢)
43ad2antrr 722 . . 3 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢) ∧ 𝑆 = βˆ…) β†’ 𝑋 ∈ 𝐢)
52, 4eqeltrd 2831 . 2 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢) ∧ 𝑆 = βˆ…) β†’ (𝑋 ∩ ∩ 𝑆) ∈ 𝐢)
6 simp2 1135 . . . . . 6 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢 ∧ 𝑆 β‰  βˆ…) β†’ 𝑆 βŠ† 𝐢)
7 mresspw 17540 . . . . . . 7 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ 𝐢 βŠ† 𝒫 𝑋)
873ad2ant1 1131 . . . . . 6 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢 ∧ 𝑆 β‰  βˆ…) β†’ 𝐢 βŠ† 𝒫 𝑋)
96, 8sstrd 3991 . . . . 5 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢 ∧ 𝑆 β‰  βˆ…) β†’ 𝑆 βŠ† 𝒫 𝑋)
10 simp3 1136 . . . . 5 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢 ∧ 𝑆 β‰  βˆ…) β†’ 𝑆 β‰  βˆ…)
11 rintn0 5111 . . . . 5 ((𝑆 βŠ† 𝒫 𝑋 ∧ 𝑆 β‰  βˆ…) β†’ (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆)
129, 10, 11syl2anc 582 . . . 4 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢 ∧ 𝑆 β‰  βˆ…) β†’ (𝑋 ∩ ∩ 𝑆) = ∩ 𝑆)
13 mreintcl 17543 . . . 4 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢 ∧ 𝑆 β‰  βˆ…) β†’ ∩ 𝑆 ∈ 𝐢)
1412, 13eqeltrd 2831 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢 ∧ 𝑆 β‰  βˆ…) β†’ (𝑋 ∩ ∩ 𝑆) ∈ 𝐢)
15143expa 1116 . 2 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢) ∧ 𝑆 β‰  βˆ…) β†’ (𝑋 ∩ ∩ 𝑆) ∈ 𝐢)
165, 15pm2.61dane 3027 1 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 βŠ† 𝐢) β†’ (𝑋 ∩ ∩ 𝑆) ∈ 𝐢)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  βˆ© cint 4949  β€˜cfv 6542  Moorecmre 17530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-mre 17534
This theorem is referenced by:  mreacs  17606  topmtcl  35551
  Copyright terms: Public domain W3C validator