MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intss2 Structured version   Visualization version   GIF version

Theorem intss2 5108
Description: A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.)
Assertion
Ref Expression
intss2 (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → 𝐴𝑋))

Proof of Theorem intss2
StepHypRef Expression
1 sspwuni 5100 . . 3 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
21biimpi 215 . 2 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
3 intssuni 4970 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
4 sstr 3987 . . 3 (( 𝐴 𝐴 𝐴𝑋) → 𝐴𝑋)
54expcom 412 . 2 ( 𝐴𝑋 → ( 𝐴 𝐴 𝐴𝑋))
62, 3, 5syl2im 40 1 (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → 𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2930  wss 3946  c0 4322  𝒫 cpw 4597   cuni 4905   cint 4946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-v 3464  df-dif 3949  df-ss 3963  df-nul 4323  df-pw 4599  df-uni 4906  df-int 4947
This theorem is referenced by:  intlidl  33301  bj-0int  36821
  Copyright terms: Public domain W3C validator