MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intss2 Structured version   Visualization version   GIF version

Theorem intss2 5033
Description: A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.)
Assertion
Ref Expression
intss2 (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → 𝐴𝑋))

Proof of Theorem intss2
StepHypRef Expression
1 sspwuni 5025 . . 3 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
21biimpi 215 . 2 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
3 intssuni 4898 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
4 sstr 3925 . . 3 (( 𝐴 𝐴 𝐴𝑋) → 𝐴𝑋)
54expcom 413 . 2 ( 𝐴𝑋 → ( 𝐴 𝐴 𝐴𝑋))
62, 3, 5syl2im 40 1 (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → 𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2942  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-uni 4837  df-int 4877
This theorem is referenced by:  intlidl  31504  bj-0int  35199
  Copyright terms: Public domain W3C validator