MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intss2 Structured version   Visualization version   GIF version

Theorem intss2 5056
Description: A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.)
Assertion
Ref Expression
intss2 (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → 𝐴𝑋))

Proof of Theorem intss2
StepHypRef Expression
1 sspwuni 5048 . . 3 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
21biimpi 216 . 2 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
3 intssuni 4920 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
4 sstr 3943 . . 3 (( 𝐴 𝐴 𝐴𝑋) → 𝐴𝑋)
54expcom 413 . 2 ( 𝐴𝑋 → ( 𝐴 𝐴 𝐴𝑋))
62, 3, 5syl2im 40 1 (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → 𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2928  wss 3902  c0 4283  𝒫 cpw 4550   cuni 4859   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3905  df-ss 3919  df-nul 4284  df-pw 4552  df-uni 4860  df-int 4898
This theorem is referenced by:  intlidl  33380  bj-0int  37134
  Copyright terms: Public domain W3C validator