Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intss2 | Structured version Visualization version GIF version |
Description: A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.) |
Ref | Expression |
---|---|
intss2 | ⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 5025 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝑋 ↔ ∪ 𝐴 ⊆ 𝑋) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝑋 → ∪ 𝐴 ⊆ 𝑋) |
3 | intssuni 4898 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
4 | sstr 3925 | . . 3 ⊢ ((∩ 𝐴 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑋) → ∩ 𝐴 ⊆ 𝑋) | |
5 | 4 | expcom 413 | . 2 ⊢ (∪ 𝐴 ⊆ 𝑋 → (∩ 𝐴 ⊆ ∪ 𝐴 → ∩ 𝐴 ⊆ 𝑋)) |
6 | 2, 3, 5 | syl2im 40 | 1 ⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ≠ wne 2942 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-uni 4837 df-int 4877 |
This theorem is referenced by: intlidl 31504 bj-0int 35199 |
Copyright terms: Public domain | W3C validator |