| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss2 | Structured version Visualization version GIF version | ||
| Description: A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.) |
| Ref | Expression |
|---|---|
| intss2 | ⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwuni 5067 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝑋 ↔ ∪ 𝐴 ⊆ 𝑋) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝑋 → ∪ 𝐴 ⊆ 𝑋) |
| 3 | intssuni 4937 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
| 4 | sstr 3958 | . . 3 ⊢ ((∩ 𝐴 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑋) → ∩ 𝐴 ⊆ 𝑋) | |
| 5 | 4 | expcom 413 | . 2 ⊢ (∪ 𝐴 ⊆ 𝑋 → (∩ 𝐴 ⊆ ∪ 𝐴 → ∩ 𝐴 ⊆ 𝑋)) |
| 6 | 2, 3, 5 | syl2im 40 | 1 ⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ≠ wne 2926 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 ∪ cuni 4874 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3920 df-ss 3934 df-nul 4300 df-pw 4568 df-uni 4875 df-int 4914 |
| This theorem is referenced by: intlidl 33398 bj-0int 37096 |
| Copyright terms: Public domain | W3C validator |