![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intss2 | Structured version Visualization version GIF version |
Description: A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.) |
Ref | Expression |
---|---|
intss2 | ⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 5100 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝑋 ↔ ∪ 𝐴 ⊆ 𝑋) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝑋 → ∪ 𝐴 ⊆ 𝑋) |
3 | intssuni 4970 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
4 | sstr 3987 | . . 3 ⊢ ((∩ 𝐴 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑋) → ∩ 𝐴 ⊆ 𝑋) | |
5 | 4 | expcom 412 | . 2 ⊢ (∪ 𝐴 ⊆ 𝑋 → (∩ 𝐴 ⊆ ∪ 𝐴 → ∩ 𝐴 ⊆ 𝑋)) |
6 | 2, 3, 5 | syl2im 40 | 1 ⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ≠ wne 2930 ⊆ wss 3946 ∅c0 4322 𝒫 cpw 4597 ∪ cuni 4905 ∩ cint 4946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-v 3464 df-dif 3949 df-ss 3963 df-nul 4323 df-pw 4599 df-uni 4906 df-int 4947 |
This theorem is referenced by: intlidl 33301 bj-0int 36821 |
Copyright terms: Public domain | W3C validator |