MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intss2 Structured version   Visualization version   GIF version

Theorem intss2 5084
Description: A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.)
Assertion
Ref Expression
intss2 (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → 𝐴𝑋))

Proof of Theorem intss2
StepHypRef Expression
1 sspwuni 5076 . . 3 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
21biimpi 216 . 2 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
3 intssuni 4946 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
4 sstr 3967 . . 3 (( 𝐴 𝐴 𝐴𝑋) → 𝐴𝑋)
54expcom 413 . 2 ( 𝐴𝑋 → ( 𝐴 𝐴 𝐴𝑋))
62, 3, 5syl2im 40 1 (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → 𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2932  wss 3926  c0 4308  𝒫 cpw 4575   cuni 4883   cint 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-v 3461  df-dif 3929  df-ss 3943  df-nul 4309  df-pw 4577  df-uni 4884  df-int 4923
This theorem is referenced by:  intlidl  33435  bj-0int  37119
  Copyright terms: Public domain W3C validator