Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismred2 | Structured version Visualization version GIF version |
Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
ismred2.ss | ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) |
ismred2.in | ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) |
Ref | Expression |
---|---|
ismred2 | ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismred2.ss | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) | |
2 | eqid 2758 | . . . 4 ⊢ ∅ = ∅ | |
3 | rint0 4880 | . . . 4 ⊢ (∅ = ∅ → (𝑋 ∩ ∩ ∅) = 𝑋) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑋 ∩ ∩ ∅) = 𝑋 |
5 | 0ss 4292 | . . . 4 ⊢ ∅ ⊆ 𝐶 | |
6 | 0ex 5177 | . . . . 5 ⊢ ∅ ∈ V | |
7 | sseq1 3917 | . . . . . . 7 ⊢ (𝑠 = ∅ → (𝑠 ⊆ 𝐶 ↔ ∅ ⊆ 𝐶)) | |
8 | 7 | anbi2d 631 | . . . . . 6 ⊢ (𝑠 = ∅ → ((𝜑 ∧ 𝑠 ⊆ 𝐶) ↔ (𝜑 ∧ ∅ ⊆ 𝐶))) |
9 | inteq 4841 | . . . . . . . 8 ⊢ (𝑠 = ∅ → ∩ 𝑠 = ∩ ∅) | |
10 | 9 | ineq2d 4117 | . . . . . . 7 ⊢ (𝑠 = ∅ → (𝑋 ∩ ∩ 𝑠) = (𝑋 ∩ ∩ ∅)) |
11 | 10 | eleq1d 2836 | . . . . . 6 ⊢ (𝑠 = ∅ → ((𝑋 ∩ ∩ 𝑠) ∈ 𝐶 ↔ (𝑋 ∩ ∩ ∅) ∈ 𝐶)) |
12 | 8, 11 | imbi12d 348 | . . . . 5 ⊢ (𝑠 = ∅ → (((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) ↔ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∩ ∩ ∅) ∈ 𝐶))) |
13 | ismred2.in | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) | |
14 | 6, 12, 13 | vtocl 3477 | . . . 4 ⊢ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∩ ∩ ∅) ∈ 𝐶) |
15 | 5, 14 | mpan2 690 | . . 3 ⊢ (𝜑 → (𝑋 ∩ ∩ ∅) ∈ 𝐶) |
16 | 4, 15 | eqeltrrid 2857 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
17 | simp2 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ⊆ 𝐶) | |
18 | 1 | 3ad2ant1 1130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋) |
19 | 17, 18 | sstrd 3902 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ⊆ 𝒫 𝑋) |
20 | simp3 1135 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ≠ ∅) | |
21 | rintn0 4996 | . . . 4 ⊢ ((𝑠 ⊆ 𝒫 𝑋 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) = ∩ 𝑠) | |
22 | 19, 20, 21 | syl2anc 587 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) = ∩ 𝑠) |
23 | 13 | 3adant3 1129 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) |
24 | 22, 23 | eqeltrrd 2853 | . 2 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) |
25 | 1, 16, 24 | ismred 16931 | 1 ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∩ cin 3857 ⊆ wss 3858 ∅c0 4225 𝒫 cpw 4494 ∩ cint 4838 ‘cfv 6335 Moorecmre 16911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-int 4839 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-mre 16915 |
This theorem is referenced by: isacs1i 16986 mreacs 16987 |
Copyright terms: Public domain | W3C validator |