Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismred2 | Structured version Visualization version GIF version |
Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
ismred2.ss | ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) |
ismred2.in | ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) |
Ref | Expression |
---|---|
ismred2 | ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismred2.ss | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) | |
2 | eqid 2739 | . . . 4 ⊢ ∅ = ∅ | |
3 | rint0 4926 | . . . 4 ⊢ (∅ = ∅ → (𝑋 ∩ ∩ ∅) = 𝑋) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑋 ∩ ∩ ∅) = 𝑋 |
5 | 0ss 4335 | . . . 4 ⊢ ∅ ⊆ 𝐶 | |
6 | 0ex 5234 | . . . . 5 ⊢ ∅ ∈ V | |
7 | sseq1 3950 | . . . . . . 7 ⊢ (𝑠 = ∅ → (𝑠 ⊆ 𝐶 ↔ ∅ ⊆ 𝐶)) | |
8 | 7 | anbi2d 628 | . . . . . 6 ⊢ (𝑠 = ∅ → ((𝜑 ∧ 𝑠 ⊆ 𝐶) ↔ (𝜑 ∧ ∅ ⊆ 𝐶))) |
9 | inteq 4887 | . . . . . . . 8 ⊢ (𝑠 = ∅ → ∩ 𝑠 = ∩ ∅) | |
10 | 9 | ineq2d 4151 | . . . . . . 7 ⊢ (𝑠 = ∅ → (𝑋 ∩ ∩ 𝑠) = (𝑋 ∩ ∩ ∅)) |
11 | 10 | eleq1d 2824 | . . . . . 6 ⊢ (𝑠 = ∅ → ((𝑋 ∩ ∩ 𝑠) ∈ 𝐶 ↔ (𝑋 ∩ ∩ ∅) ∈ 𝐶)) |
12 | 8, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑠 = ∅ → (((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) ↔ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∩ ∩ ∅) ∈ 𝐶))) |
13 | ismred2.in | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) | |
14 | 6, 12, 13 | vtocl 3496 | . . . 4 ⊢ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∩ ∩ ∅) ∈ 𝐶) |
15 | 5, 14 | mpan2 687 | . . 3 ⊢ (𝜑 → (𝑋 ∩ ∩ ∅) ∈ 𝐶) |
16 | 4, 15 | eqeltrrid 2845 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
17 | simp2 1135 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ⊆ 𝐶) | |
18 | 1 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋) |
19 | 17, 18 | sstrd 3935 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ⊆ 𝒫 𝑋) |
20 | simp3 1136 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ≠ ∅) | |
21 | rintn0 5042 | . . . 4 ⊢ ((𝑠 ⊆ 𝒫 𝑋 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) = ∩ 𝑠) | |
22 | 19, 20, 21 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) = ∩ 𝑠) |
23 | 13 | 3adant3 1130 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) |
24 | 22, 23 | eqeltrrd 2841 | . 2 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) |
25 | 1, 16, 24 | ismred 17292 | 1 ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∩ cin 3890 ⊆ wss 3891 ∅c0 4261 𝒫 cpw 4538 ∩ cint 4884 ‘cfv 6430 Moorecmre 17272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-mre 17276 |
This theorem is referenced by: isacs1i 17347 mreacs 17348 |
Copyright terms: Public domain | W3C validator |