MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismred2 Structured version   Visualization version   GIF version

Theorem ismred2 16471
Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Hypotheses
Ref Expression
ismred2.ss (𝜑𝐶 ⊆ 𝒫 𝑋)
ismred2.in ((𝜑𝑠𝐶) → (𝑋 𝑠) ∈ 𝐶)
Assertion
Ref Expression
ismred2 (𝜑𝐶 ∈ (Moore‘𝑋))
Distinct variable groups:   𝜑,𝑠   𝐶,𝑠   𝑋,𝑠

Proof of Theorem ismred2
StepHypRef Expression
1 ismred2.ss . 2 (𝜑𝐶 ⊆ 𝒫 𝑋)
2 eqid 2771 . . . 4 ∅ = ∅
3 rint0 4651 . . . 4 (∅ = ∅ → (𝑋 ∅) = 𝑋)
42, 3ax-mp 5 . . 3 (𝑋 ∅) = 𝑋
5 0ss 4116 . . . 4 ∅ ⊆ 𝐶
6 0ex 4924 . . . . 5 ∅ ∈ V
7 sseq1 3775 . . . . . . 7 (𝑠 = ∅ → (𝑠𝐶 ↔ ∅ ⊆ 𝐶))
87anbi2d 606 . . . . . 6 (𝑠 = ∅ → ((𝜑𝑠𝐶) ↔ (𝜑 ∧ ∅ ⊆ 𝐶)))
9 inteq 4614 . . . . . . . 8 (𝑠 = ∅ → 𝑠 = ∅)
109ineq2d 3965 . . . . . . 7 (𝑠 = ∅ → (𝑋 𝑠) = (𝑋 ∅))
1110eleq1d 2835 . . . . . 6 (𝑠 = ∅ → ((𝑋 𝑠) ∈ 𝐶 ↔ (𝑋 ∅) ∈ 𝐶))
128, 11imbi12d 333 . . . . 5 (𝑠 = ∅ → (((𝜑𝑠𝐶) → (𝑋 𝑠) ∈ 𝐶) ↔ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∅) ∈ 𝐶)))
13 ismred2.in . . . . 5 ((𝜑𝑠𝐶) → (𝑋 𝑠) ∈ 𝐶)
146, 12, 13vtocl 3410 . . . 4 ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∅) ∈ 𝐶)
155, 14mpan2 663 . . 3 (𝜑 → (𝑋 ∅) ∈ 𝐶)
164, 15syl5eqelr 2855 . 2 (𝜑𝑋𝐶)
17 simp2 1131 . . . . 5 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
1813ad2ant1 1127 . . . . 5 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋)
1917, 18sstrd 3762 . . . 4 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠 ⊆ 𝒫 𝑋)
20 simp3 1132 . . . 4 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠 ≠ ∅)
21 rintn0 4753 . . . 4 ((𝑠 ⊆ 𝒫 𝑋𝑠 ≠ ∅) → (𝑋 𝑠) = 𝑠)
2219, 20, 21syl2anc 565 . . 3 ((𝜑𝑠𝐶𝑠 ≠ ∅) → (𝑋 𝑠) = 𝑠)
23133adant3 1126 . . 3 ((𝜑𝑠𝐶𝑠 ≠ ∅) → (𝑋 𝑠) ∈ 𝐶)
2422, 23eqeltrrd 2851 . 2 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
251, 16, 24ismred 16470 1 (𝜑𝐶 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297   cint 4611  cfv 6031  Moorecmre 16450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-int 4612  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-mre 16454
This theorem is referenced by:  isacs1i  16525  mreacs  16526
  Copyright terms: Public domain W3C validator