| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismred2 | Structured version Visualization version GIF version | ||
| Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| ismred2.ss | ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) |
| ismred2.in | ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) |
| Ref | Expression |
|---|---|
| ismred2 | ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismred2.ss | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) | |
| 2 | eqid 2729 | . . . 4 ⊢ ∅ = ∅ | |
| 3 | rint0 4952 | . . . 4 ⊢ (∅ = ∅ → (𝑋 ∩ ∩ ∅) = 𝑋) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑋 ∩ ∩ ∅) = 𝑋 |
| 5 | 0ss 4363 | . . . 4 ⊢ ∅ ⊆ 𝐶 | |
| 6 | 0ex 5262 | . . . . 5 ⊢ ∅ ∈ V | |
| 7 | sseq1 3972 | . . . . . . 7 ⊢ (𝑠 = ∅ → (𝑠 ⊆ 𝐶 ↔ ∅ ⊆ 𝐶)) | |
| 8 | 7 | anbi2d 630 | . . . . . 6 ⊢ (𝑠 = ∅ → ((𝜑 ∧ 𝑠 ⊆ 𝐶) ↔ (𝜑 ∧ ∅ ⊆ 𝐶))) |
| 9 | inteq 4913 | . . . . . . . 8 ⊢ (𝑠 = ∅ → ∩ 𝑠 = ∩ ∅) | |
| 10 | 9 | ineq2d 4183 | . . . . . . 7 ⊢ (𝑠 = ∅ → (𝑋 ∩ ∩ 𝑠) = (𝑋 ∩ ∩ ∅)) |
| 11 | 10 | eleq1d 2813 | . . . . . 6 ⊢ (𝑠 = ∅ → ((𝑋 ∩ ∩ 𝑠) ∈ 𝐶 ↔ (𝑋 ∩ ∩ ∅) ∈ 𝐶)) |
| 12 | 8, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑠 = ∅ → (((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) ↔ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∩ ∩ ∅) ∈ 𝐶))) |
| 13 | ismred2.in | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) | |
| 14 | 6, 12, 13 | vtocl 3524 | . . . 4 ⊢ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∩ ∩ ∅) ∈ 𝐶) |
| 15 | 5, 14 | mpan2 691 | . . 3 ⊢ (𝜑 → (𝑋 ∩ ∩ ∅) ∈ 𝐶) |
| 16 | 4, 15 | eqeltrrid 2833 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
| 17 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ⊆ 𝐶) | |
| 18 | 1 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋) |
| 19 | 17, 18 | sstrd 3957 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ⊆ 𝒫 𝑋) |
| 20 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ≠ ∅) | |
| 21 | rintn0 5073 | . . . 4 ⊢ ((𝑠 ⊆ 𝒫 𝑋 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) = ∩ 𝑠) | |
| 22 | 19, 20, 21 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) = ∩ 𝑠) |
| 23 | 13 | 3adant3 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) |
| 24 | 22, 23 | eqeltrrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) |
| 25 | 1, 16, 24 | ismred 17563 | 1 ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ∩ cint 4910 ‘cfv 6511 Moorecmre 17543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-mre 17547 |
| This theorem is referenced by: isacs1i 17618 mreacs 17619 |
| Copyright terms: Public domain | W3C validator |