![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismred2 | Structured version Visualization version GIF version |
Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
ismred2.ss | ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) |
ismred2.in | ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) |
Ref | Expression |
---|---|
ismred2 | ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismred2.ss | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) | |
2 | eqid 2740 | . . . 4 ⊢ ∅ = ∅ | |
3 | rint0 5012 | . . . 4 ⊢ (∅ = ∅ → (𝑋 ∩ ∩ ∅) = 𝑋) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝑋 ∩ ∩ ∅) = 𝑋 |
5 | 0ss 4423 | . . . 4 ⊢ ∅ ⊆ 𝐶 | |
6 | 0ex 5325 | . . . . 5 ⊢ ∅ ∈ V | |
7 | sseq1 4034 | . . . . . . 7 ⊢ (𝑠 = ∅ → (𝑠 ⊆ 𝐶 ↔ ∅ ⊆ 𝐶)) | |
8 | 7 | anbi2d 629 | . . . . . 6 ⊢ (𝑠 = ∅ → ((𝜑 ∧ 𝑠 ⊆ 𝐶) ↔ (𝜑 ∧ ∅ ⊆ 𝐶))) |
9 | inteq 4973 | . . . . . . . 8 ⊢ (𝑠 = ∅ → ∩ 𝑠 = ∩ ∅) | |
10 | 9 | ineq2d 4241 | . . . . . . 7 ⊢ (𝑠 = ∅ → (𝑋 ∩ ∩ 𝑠) = (𝑋 ∩ ∩ ∅)) |
11 | 10 | eleq1d 2829 | . . . . . 6 ⊢ (𝑠 = ∅ → ((𝑋 ∩ ∩ 𝑠) ∈ 𝐶 ↔ (𝑋 ∩ ∩ ∅) ∈ 𝐶)) |
12 | 8, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑠 = ∅ → (((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) ↔ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∩ ∩ ∅) ∈ 𝐶))) |
13 | ismred2.in | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) | |
14 | 6, 12, 13 | vtocl 3570 | . . . 4 ⊢ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∩ ∩ ∅) ∈ 𝐶) |
15 | 5, 14 | mpan2 690 | . . 3 ⊢ (𝜑 → (𝑋 ∩ ∩ ∅) ∈ 𝐶) |
16 | 4, 15 | eqeltrrid 2849 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
17 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ⊆ 𝐶) | |
18 | 1 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋) |
19 | 17, 18 | sstrd 4019 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ⊆ 𝒫 𝑋) |
20 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → 𝑠 ≠ ∅) | |
21 | rintn0 5132 | . . . 4 ⊢ ((𝑠 ⊆ 𝒫 𝑋 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) = ∩ 𝑠) | |
22 | 19, 20, 21 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) = ∩ 𝑠) |
23 | 13 | 3adant3 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) |
24 | 22, 23 | eqeltrrd 2845 | . 2 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) |
25 | 1, 16, 24 | ismred 17660 | 1 ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ∩ cint 4970 ‘cfv 6573 Moorecmre 17640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-mre 17644 |
This theorem is referenced by: isacs1i 17715 mreacs 17716 |
Copyright terms: Public domain | W3C validator |