MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismred2 Structured version   Visualization version   GIF version

Theorem ismred2 16578
Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Hypotheses
Ref Expression
ismred2.ss (𝜑𝐶 ⊆ 𝒫 𝑋)
ismred2.in ((𝜑𝑠𝐶) → (𝑋 𝑠) ∈ 𝐶)
Assertion
Ref Expression
ismred2 (𝜑𝐶 ∈ (Moore‘𝑋))
Distinct variable groups:   𝜑,𝑠   𝐶,𝑠   𝑋,𝑠

Proof of Theorem ismred2
StepHypRef Expression
1 ismred2.ss . 2 (𝜑𝐶 ⊆ 𝒫 𝑋)
2 eqid 2799 . . . 4 ∅ = ∅
3 rint0 4707 . . . 4 (∅ = ∅ → (𝑋 ∅) = 𝑋)
42, 3ax-mp 5 . . 3 (𝑋 ∅) = 𝑋
5 0ss 4168 . . . 4 ∅ ⊆ 𝐶
6 0ex 4984 . . . . 5 ∅ ∈ V
7 sseq1 3822 . . . . . . 7 (𝑠 = ∅ → (𝑠𝐶 ↔ ∅ ⊆ 𝐶))
87anbi2d 623 . . . . . 6 (𝑠 = ∅ → ((𝜑𝑠𝐶) ↔ (𝜑 ∧ ∅ ⊆ 𝐶)))
9 inteq 4670 . . . . . . . 8 (𝑠 = ∅ → 𝑠 = ∅)
109ineq2d 4012 . . . . . . 7 (𝑠 = ∅ → (𝑋 𝑠) = (𝑋 ∅))
1110eleq1d 2863 . . . . . 6 (𝑠 = ∅ → ((𝑋 𝑠) ∈ 𝐶 ↔ (𝑋 ∅) ∈ 𝐶))
128, 11imbi12d 336 . . . . 5 (𝑠 = ∅ → (((𝜑𝑠𝐶) → (𝑋 𝑠) ∈ 𝐶) ↔ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∅) ∈ 𝐶)))
13 ismred2.in . . . . 5 ((𝜑𝑠𝐶) → (𝑋 𝑠) ∈ 𝐶)
146, 12, 13vtocl 3446 . . . 4 ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∅) ∈ 𝐶)
155, 14mpan2 683 . . 3 (𝜑 → (𝑋 ∅) ∈ 𝐶)
164, 15syl5eqelr 2883 . 2 (𝜑𝑋𝐶)
17 simp2 1168 . . . . 5 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
1813ad2ant1 1164 . . . . 5 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋)
1917, 18sstrd 3808 . . . 4 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠 ⊆ 𝒫 𝑋)
20 simp3 1169 . . . 4 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠 ≠ ∅)
21 rintn0 4810 . . . 4 ((𝑠 ⊆ 𝒫 𝑋𝑠 ≠ ∅) → (𝑋 𝑠) = 𝑠)
2219, 20, 21syl2anc 580 . . 3 ((𝜑𝑠𝐶𝑠 ≠ ∅) → (𝑋 𝑠) = 𝑠)
23133adant3 1163 . . 3 ((𝜑𝑠𝐶𝑠 ≠ ∅) → (𝑋 𝑠) ∈ 𝐶)
2422, 23eqeltrrd 2879 . 2 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
251, 16, 24ismred 16577 1 (𝜑𝐶 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  cin 3768  wss 3769  c0 4115  𝒫 cpw 4349   cint 4667  cfv 6101  Moorecmre 16557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-int 4668  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-iota 6064  df-fun 6103  df-fv 6109  df-mre 16561
This theorem is referenced by:  isacs1i  16632  mreacs  16633
  Copyright terms: Public domain W3C validator