Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | riotabidv 7110 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | riotaeqdv 7109 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | eqtrd 2793 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ℩crio 7107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 df-uni 4799 df-iota 6294 df-riota 7108 |
This theorem is referenced by: dfoi 9008 oieq1 9009 oieq2 9010 ordtypecbv 9014 ordtypelem3 9017 zorn2lem1 9956 zorn2g 9963 cidfval 17005 cidval 17006 cidpropd 17038 lubfval 17654 glbfval 17667 grpinvfval 18209 grpinvfvalALT 18210 pj1fval 18887 mpfrcl 20848 evlsval 20849 q1pval 24853 ig1pval 24872 mirval 26548 midf 26669 ismidb 26671 lmif 26678 islmib 26680 gidval 28394 grpoinvfval 28404 pjhfval 29278 cvmliftlem5 32767 cvmliftlem15 32776 scutval 33557 trlfset 37736 dicffval 38750 dicfval 38751 dihffval 38806 dihfval 38807 hvmapffval 39334 hvmapfval 39335 hdmap1fval 39372 hdmapffval 39402 hdmapfval 39403 hgmapfval 39462 wessf1ornlem 42181 |
Copyright terms: Public domain | W3C validator |