| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | riotabidv 7328 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| 3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | riotaeqdv 7327 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: dfoi 9440 oieq1 9441 oieq2 9442 ordtypecbv 9446 ordtypelem3 9449 zorn2lem1 10425 zorn2g 10432 cidfval 17617 cidval 17618 cidpropd 17651 lubfval 18289 glbfval 18302 grpinvfval 18892 grpinvfvalALT 18893 pj1fval 19608 mpfrcl 22025 evlsval 22026 q1pval 26093 ig1pval 26114 scutval 27746 mirval 28635 midf 28756 ismidb 28758 lmif 28765 islmib 28767 gidval 30491 grpoinvfval 30501 pjhfval 31375 cvmliftlem5 35269 cvmliftlem15 35278 weiunlem2 36444 trlfset 40147 dicffval 41161 dicfval 41162 dihffval 41217 dihfval 41218 hvmapffval 41745 hvmapfval 41746 hdmap1fval 41783 hdmapffval 41813 hdmapfval 41814 hgmapfval 41873 wessf1ornlem 45172 |
| Copyright terms: Public domain | W3C validator |