Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | riotabidv 7214 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | riotaeqdv 7213 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: dfoi 9200 oieq1 9201 oieq2 9202 ordtypecbv 9206 ordtypelem3 9209 zorn2lem1 10183 zorn2g 10190 cidfval 17302 cidval 17303 cidpropd 17336 lubfval 17983 glbfval 17996 grpinvfval 18533 grpinvfvalALT 18534 pj1fval 19215 mpfrcl 21205 evlsval 21206 q1pval 25223 ig1pval 25242 mirval 26920 midf 27041 ismidb 27043 lmif 27050 islmib 27052 gidval 28775 grpoinvfval 28785 pjhfval 29659 cvmliftlem5 33151 cvmliftlem15 33160 scutval 33921 trlfset 38101 dicffval 39115 dicfval 39116 dihffval 39171 dihfval 39172 hvmapffval 39699 hvmapfval 39700 hdmap1fval 39737 hdmapffval 39767 hdmapfval 39768 hgmapfval 39827 wessf1ornlem 42611 |
Copyright terms: Public domain | W3C validator |