| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | riotabidv 7305 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| 3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | riotaeqdv 7304 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | eqtrd 2766 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 df-iota 6437 df-riota 7303 |
| This theorem is referenced by: dfoi 9397 oieq1 9398 oieq2 9399 ordtypecbv 9403 ordtypelem3 9406 zorn2lem1 10387 zorn2g 10394 cidfval 17582 cidval 17583 cidpropd 17616 lubfval 18254 glbfval 18267 grpinvfval 18891 grpinvfvalALT 18892 pj1fval 19606 mpfrcl 22020 evlsval 22021 q1pval 26087 ig1pval 26108 scutval 27741 mirval 28633 midf 28754 ismidb 28756 lmif 28763 islmib 28765 gidval 30492 grpoinvfval 30502 pjhfval 31376 cvmliftlem5 35333 cvmliftlem15 35342 weiunlem2 36507 trlfset 40258 dicffval 41272 dicfval 41273 dihffval 41328 dihfval 41329 hvmapffval 41856 hvmapfval 41857 hdmap1fval 41894 hdmapffval 41924 hdmapfval 41925 hgmapfval 41984 wessf1ornlem 45281 |
| Copyright terms: Public domain | W3C validator |