![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | riotabidv 7390 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | riotaeqdv 7389 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | eqtrd 2775 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ℩crio 7387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-uni 4913 df-iota 6516 df-riota 7388 |
This theorem is referenced by: dfoi 9549 oieq1 9550 oieq2 9551 ordtypecbv 9555 ordtypelem3 9558 zorn2lem1 10534 zorn2g 10541 cidfval 17721 cidval 17722 cidpropd 17755 lubfval 18408 glbfval 18421 grpinvfval 19009 grpinvfvalALT 19010 pj1fval 19727 mpfrcl 22127 evlsval 22128 q1pval 26209 ig1pval 26230 scutval 27860 mirval 28678 midf 28799 ismidb 28801 lmif 28808 islmib 28810 gidval 30541 grpoinvfval 30551 pjhfval 31425 cvmliftlem5 35274 cvmliftlem15 35283 weiunlem2 36446 trlfset 40143 dicffval 41157 dicfval 41158 dihffval 41213 dihfval 41214 hvmapffval 41741 hvmapfval 41742 hdmap1fval 41779 hdmapffval 41809 hdmapfval 41810 hgmapfval 41869 wessf1ornlem 45128 |
Copyright terms: Public domain | W3C validator |