![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | riotabidv 7406 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | riotaeqdv 7405 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | eqtrd 2780 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ℩crio 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-iota 6525 df-riota 7404 |
This theorem is referenced by: dfoi 9580 oieq1 9581 oieq2 9582 ordtypecbv 9586 ordtypelem3 9589 zorn2lem1 10565 zorn2g 10572 cidfval 17734 cidval 17735 cidpropd 17768 lubfval 18420 glbfval 18433 grpinvfval 19018 grpinvfvalALT 19019 pj1fval 19736 mpfrcl 22132 evlsval 22133 q1pval 26214 ig1pval 26235 scutval 27863 mirval 28681 midf 28802 ismidb 28804 lmif 28811 islmib 28813 gidval 30544 grpoinvfval 30554 pjhfval 31428 cvmliftlem5 35257 cvmliftlem15 35266 weiunlem2 36429 trlfset 40117 dicffval 41131 dicfval 41132 dihffval 41187 dihfval 41188 hvmapffval 41715 hvmapfval 41716 hdmap1fval 41753 hdmapffval 41783 hdmapfval 41784 hgmapfval 41843 wessf1ornlem 45092 |
Copyright terms: Public domain | W3C validator |