| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | riotabidv 7349 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| 3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | riotaeqdv 7348 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | eqtrd 2765 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ℩crio 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 df-iota 6467 df-riota 7347 |
| This theorem is referenced by: dfoi 9471 oieq1 9472 oieq2 9473 ordtypecbv 9477 ordtypelem3 9480 zorn2lem1 10456 zorn2g 10463 cidfval 17644 cidval 17645 cidpropd 17678 lubfval 18316 glbfval 18329 grpinvfval 18917 grpinvfvalALT 18918 pj1fval 19631 mpfrcl 21999 evlsval 22000 q1pval 26067 ig1pval 26088 scutval 27719 mirval 28589 midf 28710 ismidb 28712 lmif 28719 islmib 28721 gidval 30448 grpoinvfval 30458 pjhfval 31332 cvmliftlem5 35283 cvmliftlem15 35292 weiunlem2 36458 trlfset 40161 dicffval 41175 dicfval 41176 dihffval 41231 dihfval 41232 hvmapffval 41759 hvmapfval 41760 hdmap1fval 41797 hdmapffval 41827 hdmapfval 41828 hgmapfval 41887 wessf1ornlem 45186 |
| Copyright terms: Public domain | W3C validator |