| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | riotabidv 7328 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| 3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | riotaeqdv 7327 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: dfoi 9440 oieq1 9441 oieq2 9442 ordtypecbv 9446 ordtypelem3 9449 zorn2lem1 10427 zorn2g 10434 cidfval 17618 cidval 17619 cidpropd 17652 lubfval 18290 glbfval 18303 grpinvfval 18893 grpinvfvalALT 18894 pj1fval 19609 mpfrcl 22026 evlsval 22027 q1pval 26094 ig1pval 26115 scutval 27747 mirval 28636 midf 28757 ismidb 28759 lmif 28766 islmib 28768 gidval 30492 grpoinvfval 30502 pjhfval 31376 cvmliftlem5 35270 cvmliftlem15 35279 weiunlem2 36445 trlfset 40148 dicffval 41162 dicfval 41163 dihffval 41218 dihfval 41219 hvmapffval 41746 hvmapfval 41747 hdmap1fval 41784 hdmapffval 41814 hdmapfval 41815 hgmapfval 41874 wessf1ornlem 45173 |
| Copyright terms: Public domain | W3C validator |