| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | riotabidv 7369 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| 3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | riotaeqdv 7368 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | eqtrd 2771 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ℩crio 7366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-uni 4889 df-iota 6489 df-riota 7367 |
| This theorem is referenced by: dfoi 9530 oieq1 9531 oieq2 9532 ordtypecbv 9536 ordtypelem3 9539 zorn2lem1 10515 zorn2g 10522 cidfval 17693 cidval 17694 cidpropd 17727 lubfval 18365 glbfval 18378 grpinvfval 18966 grpinvfvalALT 18967 pj1fval 19680 mpfrcl 22048 evlsval 22049 q1pval 26117 ig1pval 26138 scutval 27769 mirval 28639 midf 28760 ismidb 28762 lmif 28769 islmib 28771 gidval 30498 grpoinvfval 30508 pjhfval 31382 cvmliftlem5 35316 cvmliftlem15 35325 weiunlem2 36486 trlfset 40184 dicffval 41198 dicfval 41199 dihffval 41254 dihfval 41255 hvmapffval 41782 hvmapfval 41783 hdmap1fval 41820 hdmapffval 41850 hdmapfval 41851 hgmapfval 41910 wessf1ornlem 45176 |
| Copyright terms: Public domain | W3C validator |