Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | riotabidv 7234 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | riotaeqdv 7233 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ℩crio 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-iota 6391 df-riota 7232 |
This theorem is referenced by: dfoi 9270 oieq1 9271 oieq2 9272 ordtypecbv 9276 ordtypelem3 9279 zorn2lem1 10252 zorn2g 10259 cidfval 17385 cidval 17386 cidpropd 17419 lubfval 18068 glbfval 18081 grpinvfval 18618 grpinvfvalALT 18619 pj1fval 19300 mpfrcl 21295 evlsval 21296 q1pval 25318 ig1pval 25337 mirval 27016 midf 27137 ismidb 27139 lmif 27146 islmib 27148 gidval 28874 grpoinvfval 28884 pjhfval 29758 cvmliftlem5 33251 cvmliftlem15 33260 scutval 33994 trlfset 38174 dicffval 39188 dicfval 39189 dihffval 39244 dihfval 39245 hvmapffval 39772 hvmapfval 39773 hdmap1fval 39810 hdmapffval 39840 hdmapfval 39841 hgmapfval 39900 wessf1ornlem 42722 |
Copyright terms: Public domain | W3C validator |