| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | riotabidv 7308 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| 3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | riotaeqdv 7307 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ℩crio 7305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-uni 4859 df-iota 6438 df-riota 7306 |
| This theorem is referenced by: dfoi 9403 oieq1 9404 oieq2 9405 ordtypecbv 9409 ordtypelem3 9412 zorn2lem1 10390 zorn2g 10397 cidfval 17582 cidval 17583 cidpropd 17616 lubfval 18254 glbfval 18267 grpinvfval 18857 grpinvfvalALT 18858 pj1fval 19573 mpfrcl 21990 evlsval 21991 q1pval 26058 ig1pval 26079 scutval 27712 mirval 28604 midf 28725 ismidb 28727 lmif 28734 islmib 28736 gidval 30460 grpoinvfval 30470 pjhfval 31344 cvmliftlem5 35282 cvmliftlem15 35291 weiunlem2 36457 trlfset 40159 dicffval 41173 dicfval 41174 dihffval 41229 dihfval 41230 hvmapffval 41757 hvmapfval 41758 hdmap1fval 41795 hdmapffval 41825 hdmapfval 41826 hgmapfval 41885 wessf1ornlem 45183 |
| Copyright terms: Public domain | W3C validator |