MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvpropd Structured version   Visualization version   GIF version

Theorem grpinvpropd 18930
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvpropd.1 (𝜑𝐵 = (Base‘𝐾))
grpinvpropd.2 (𝜑𝐵 = (Base‘𝐿))
grpinvpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grpinvpropd (𝜑 → (invg𝐾) = (invg𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grpinvpropd
StepHypRef Expression
1 grpinvpropd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2 grpinvpropd.1 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐾))
3 grpinvpropd.2 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐿))
42, 3, 1grpidpropd 18572 . . . . . . . 8 (𝜑 → (0g𝐾) = (0g𝐿))
54adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (0g𝐾) = (0g𝐿))
61, 5eqeq12d 2749 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
76anass1rs 655 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝑥𝐵) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
87riotabidva 7328 . . . 4 ((𝜑𝑦𝐵) → (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾)) = (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
98mpteq2dva 5186 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿))))
102riotaeqdv 7310 . . . 4 (𝜑 → (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾)) = (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
112, 10mpteq12dv 5180 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾))))
123riotaeqdv 7310 . . . 4 (𝜑 → (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)) = (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
133, 12mpteq12dv 5180 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿))) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
149, 11, 133eqtr3d 2776 . 2 (𝜑 → (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
15 eqid 2733 . . 3 (Base‘𝐾) = (Base‘𝐾)
16 eqid 2733 . . 3 (+g𝐾) = (+g𝐾)
17 eqid 2733 . . 3 (0g𝐾) = (0g𝐾)
18 eqid 2733 . . 3 (invg𝐾) = (invg𝐾)
1915, 16, 17, 18grpinvfval 18893 . 2 (invg𝐾) = (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
20 eqid 2733 . . 3 (Base‘𝐿) = (Base‘𝐿)
21 eqid 2733 . . 3 (+g𝐿) = (+g𝐿)
22 eqid 2733 . . 3 (0g𝐿) = (0g𝐿)
23 eqid 2733 . . 3 (invg𝐿) = (invg𝐿)
2420, 21, 22, 23grpinvfval 18893 . 2 (invg𝐿) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
2514, 19, 243eqtr4g 2793 1 (𝜑 → (invg𝐾) = (invg𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cmpt 5174  cfv 6486  crio 7308  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  invgcminusg 18849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7309  df-ov 7355  df-0g 17347  df-minusg 18852
This theorem is referenced by:  grpsubpropd  18960  grpsubpropd2  18961  mulgpropd  19031  invrpropd  20338  rlmvneg  21142  matinvg  22334  tngngp3  24572
  Copyright terms: Public domain W3C validator