![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvpropd | Structured version Visualization version GIF version |
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
grpinvpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
grpinvpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
grpinvpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
Ref | Expression |
---|---|
grpinvpropd | ⊢ (𝜑 → (invg‘𝐾) = (invg‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvpropd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
2 | grpinvpropd.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
3 | grpinvpropd.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
4 | 2, 3, 1 | grpidpropd 18607 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (0g‘𝐾) = (0g‘𝐿)) |
6 | 1, 5 | eqeq12d 2743 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
7 | 6 | anass1rs 654 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
8 | 7 | riotabidva 7390 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (℩𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾)) = (℩𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
9 | 8 | mpteq2dva 5242 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (℩𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) = (𝑦 ∈ 𝐵 ↦ (℩𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿)))) |
10 | 2 | riotaeqdv 7371 | . . . 4 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾)) = (℩𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
11 | 2, 10 | mpteq12dv 5233 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (℩𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) = (𝑦 ∈ (Base‘𝐾) ↦ (℩𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾)))) |
12 | 3 | riotaeqdv 7371 | . . . 4 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿)) = (℩𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
13 | 3, 12 | mpteq12dv 5233 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (℩𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) = (𝑦 ∈ (Base‘𝐿) ↦ (℩𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿)))) |
14 | 9, 11, 13 | 3eqtr3d 2775 | . 2 ⊢ (𝜑 → (𝑦 ∈ (Base‘𝐾) ↦ (℩𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) = (𝑦 ∈ (Base‘𝐿) ↦ (℩𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿)))) |
15 | eqid 2727 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
16 | eqid 2727 | . . 3 ⊢ (+g‘𝐾) = (+g‘𝐾) | |
17 | eqid 2727 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
18 | eqid 2727 | . . 3 ⊢ (invg‘𝐾) = (invg‘𝐾) | |
19 | 15, 16, 17, 18 | grpinvfval 18920 | . 2 ⊢ (invg‘𝐾) = (𝑦 ∈ (Base‘𝐾) ↦ (℩𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
20 | eqid 2727 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
21 | eqid 2727 | . . 3 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
22 | eqid 2727 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
23 | eqid 2727 | . . 3 ⊢ (invg‘𝐿) = (invg‘𝐿) | |
24 | 20, 21, 22, 23 | grpinvfval 18920 | . 2 ⊢ (invg‘𝐿) = (𝑦 ∈ (Base‘𝐿) ↦ (℩𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
25 | 14, 19, 24 | 3eqtr4g 2792 | 1 ⊢ (𝜑 → (invg‘𝐾) = (invg‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5225 ‘cfv 6542 ℩crio 7369 (class class class)co 7414 Basecbs 17165 +gcplusg 17218 0gc0g 17406 invgcminusg 18876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-riota 7370 df-ov 7417 df-0g 17408 df-minusg 18879 |
This theorem is referenced by: grpsubpropd 18985 grpsubpropd2 18986 mulgpropd 19055 invrpropd 20339 rlmvneg 21081 matinvg 22294 tngngp3 24547 |
Copyright terms: Public domain | W3C validator |