MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvpropd Structured version   Visualization version   GIF version

Theorem grpinvpropd 18925
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvpropd.1 (𝜑𝐵 = (Base‘𝐾))
grpinvpropd.2 (𝜑𝐵 = (Base‘𝐿))
grpinvpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grpinvpropd (𝜑 → (invg𝐾) = (invg𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grpinvpropd
StepHypRef Expression
1 grpinvpropd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2 grpinvpropd.1 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐾))
3 grpinvpropd.2 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐿))
42, 3, 1grpidpropd 18567 . . . . . . . 8 (𝜑 → (0g𝐾) = (0g𝐿))
54adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (0g𝐾) = (0g𝐿))
61, 5eqeq12d 2747 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
76anass1rs 655 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝑥𝐵) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
87riotabidva 7322 . . . 4 ((𝜑𝑦𝐵) → (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾)) = (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
98mpteq2dva 5184 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿))))
102riotaeqdv 7304 . . . 4 (𝜑 → (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾)) = (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
112, 10mpteq12dv 5178 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾))))
123riotaeqdv 7304 . . . 4 (𝜑 → (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)) = (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
133, 12mpteq12dv 5178 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿))) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
149, 11, 133eqtr3d 2774 . 2 (𝜑 → (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
15 eqid 2731 . . 3 (Base‘𝐾) = (Base‘𝐾)
16 eqid 2731 . . 3 (+g𝐾) = (+g𝐾)
17 eqid 2731 . . 3 (0g𝐾) = (0g𝐾)
18 eqid 2731 . . 3 (invg𝐾) = (invg𝐾)
1915, 16, 17, 18grpinvfval 18888 . 2 (invg𝐾) = (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
20 eqid 2731 . . 3 (Base‘𝐿) = (Base‘𝐿)
21 eqid 2731 . . 3 (+g𝐿) = (+g𝐿)
22 eqid 2731 . . 3 (0g𝐿) = (0g𝐿)
23 eqid 2731 . . 3 (invg𝐿) = (invg𝐿)
2420, 21, 22, 23grpinvfval 18888 . 2 (invg𝐿) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
2514, 19, 243eqtr4g 2791 1 (𝜑 → (invg𝐾) = (invg𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cmpt 5172  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  0gc0g 17340  invgcminusg 18844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17342  df-minusg 18847
This theorem is referenced by:  grpsubpropd  18955  grpsubpropd2  18956  mulgpropd  19026  invrpropd  20334  rlmvneg  21138  matinvg  22331  tngngp3  24569
  Copyright terms: Public domain W3C validator