MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvpropd Structured version   Visualization version   GIF version

Theorem grpinvpropd 18953
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvpropd.1 (𝜑𝐵 = (Base‘𝐾))
grpinvpropd.2 (𝜑𝐵 = (Base‘𝐿))
grpinvpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grpinvpropd (𝜑 → (invg𝐾) = (invg𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grpinvpropd
StepHypRef Expression
1 grpinvpropd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2 grpinvpropd.1 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐾))
3 grpinvpropd.2 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐿))
42, 3, 1grpidpropd 18595 . . . . . . . 8 (𝜑 → (0g𝐾) = (0g𝐿))
54adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (0g𝐾) = (0g𝐿))
61, 5eqeq12d 2746 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
76anass1rs 655 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝑥𝐵) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
87riotabidva 7365 . . . 4 ((𝜑𝑦𝐵) → (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾)) = (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
98mpteq2dva 5202 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿))))
102riotaeqdv 7347 . . . 4 (𝜑 → (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾)) = (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
112, 10mpteq12dv 5196 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾))))
123riotaeqdv 7347 . . . 4 (𝜑 → (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)) = (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
133, 12mpteq12dv 5196 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿))) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
149, 11, 133eqtr3d 2773 . 2 (𝜑 → (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
15 eqid 2730 . . 3 (Base‘𝐾) = (Base‘𝐾)
16 eqid 2730 . . 3 (+g𝐾) = (+g𝐾)
17 eqid 2730 . . 3 (0g𝐾) = (0g𝐾)
18 eqid 2730 . . 3 (invg𝐾) = (invg𝐾)
1915, 16, 17, 18grpinvfval 18916 . 2 (invg𝐾) = (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
20 eqid 2730 . . 3 (Base‘𝐿) = (Base‘𝐿)
21 eqid 2730 . . 3 (+g𝐿) = (+g𝐿)
22 eqid 2730 . . 3 (0g𝐿) = (0g𝐿)
23 eqid 2730 . . 3 (invg𝐿) = (invg𝐿)
2420, 21, 22, 23grpinvfval 18916 . 2 (invg𝐿) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
2514, 19, 243eqtr4g 2790 1 (𝜑 → (invg𝐾) = (invg𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cmpt 5190  cfv 6513  crio 7345  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  0gc0g 17408  invgcminusg 18872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-riota 7346  df-ov 7392  df-0g 17410  df-minusg 18875
This theorem is referenced by:  grpsubpropd  18983  grpsubpropd2  18984  mulgpropd  19054  invrpropd  20333  rlmvneg  21119  matinvg  22311  tngngp3  24550
  Copyright terms: Public domain W3C validator