| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | iotabidv 6470 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-riota 7310 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-riota 7310 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ℩cio 6440 ℩crio 7309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-uni 4862 df-iota 6442 df-riota 7310 |
| This theorem is referenced by: riotaeqbidv 7313 csbriota 7325 sup0riota 9375 infval 9396 ttrcltr 9631 fin23lem27 10241 subval 11372 divval 11799 flval 13716 ceilval2 13762 cjval 15027 sqrtval 15162 qnumval 16666 qdenval 16667 lubval 18278 glbval 18291 joinval2 18303 meetval2 18317 grpinvval 18877 pj1fval 19591 pj1val 19592 q1pval 26076 coeval 26144 quotval 26216 divsval 28115 ismidb 28741 lmif 28748 islmib 28750 uspgredg2v 29187 usgredg2v 29190 frgrncvvdeqlem8 30268 frgrncvvdeqlem9 30269 grpoinvval 30485 pjhval 31359 nmopadjlei 32050 cdj3lem2 32397 cvmliftlem15 35270 cvmlift2lem4 35278 cvmlift2 35288 cvmlift3lem2 35292 cvmlift3lem4 35294 cvmlift3lem6 35296 cvmlift3lem7 35297 cvmlift3lem9 35299 cvmlift3 35300 fvtransport 36005 lshpkrlem1 39088 lshpkrlem2 39089 lshpkrlem3 39090 lshpkrcl 39094 trlset 40140 trlval 40141 cdleme27b 40347 cdleme29b 40354 cdleme31so 40358 cdleme31sn1 40360 cdleme31sn1c 40367 cdleme31fv 40369 cdlemefrs29clN 40378 cdleme40v 40448 cdlemg1cN 40566 cdlemg1cex 40567 cdlemksv 40823 cdlemkuu 40874 cdlemkid3N 40912 cdlemkid4 40913 cdlemm10N 41097 dicval 41155 dihval 41211 dochfl1 41455 lcfl7N 41480 lcfrlem8 41528 lcfrlem9 41529 lcf1o 41530 mapdhval 41703 hvmapval 41739 hvmapvalvalN 41740 hdmap1fval 41775 hdmap1vallem 41776 hdmap1val 41777 hdmap1cbv 41781 hdmapfval 41806 hdmapval 41807 hgmapffval 41864 hgmapfval 41865 hgmapval 41866 resubval 42340 redivvald 42415 unxpwdom3 43068 mpaaval 43124 |
| Copyright terms: Public domain | W3C validator |