Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 632 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | iotabidv 6364 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | df-riota 7170 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | df-riota 7170 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
6 | 3, 4, 5 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ℩cio 6336 ℩crio 7169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-in 3873 df-ss 3883 df-uni 4820 df-iota 6338 df-riota 7170 |
This theorem is referenced by: riotaeqbidv 7173 csbriota 7186 sup0riota 9081 infval 9102 fin23lem27 9942 subval 11069 divval 11492 flval 13369 ceilval2 13415 cjval 14665 sqrtval 14800 qnumval 16293 qdenval 16294 lubval 17862 glbval 17875 joinval2 17887 meetval2 17901 grpinvval 18408 pj1fval 19084 pj1val 19085 q1pval 25051 coeval 25117 quotval 25185 ismidb 26869 lmif 26876 islmib 26878 uspgredg2v 27312 usgredg2v 27315 frgrncvvdeqlem8 28389 frgrncvvdeqlem9 28390 grpoinvval 28604 pjhval 29478 nmopadjlei 30169 cdj3lem2 30516 cvmliftlem15 32973 cvmlift2lem4 32981 cvmlift2 32991 cvmlift3lem2 32995 cvmlift3lem4 32997 cvmlift3lem6 32999 cvmlift3lem7 33000 cvmlift3lem9 33002 cvmlift3 33003 ttrcltr 33515 fvtransport 34071 lshpkrlem1 36861 lshpkrlem2 36862 lshpkrlem3 36863 lshpkrcl 36867 trlset 37912 trlval 37913 cdleme27b 38119 cdleme29b 38126 cdleme31so 38130 cdleme31sn1 38132 cdleme31sn1c 38139 cdleme31fv 38141 cdlemefrs29clN 38150 cdleme40v 38220 cdlemg1cN 38338 cdlemg1cex 38339 cdlemksv 38595 cdlemkuu 38646 cdlemkid3N 38684 cdlemkid4 38685 cdlemm10N 38869 dicval 38927 dihval 38983 dochfl1 39227 lcfl7N 39252 lcfrlem8 39300 lcfrlem9 39301 lcf1o 39302 mapdhval 39475 hvmapval 39511 hvmapvalvalN 39512 hdmap1fval 39547 hdmap1vallem 39548 hdmap1val 39549 hdmap1cbv 39553 hdmapfval 39578 hdmapval 39579 hgmapffval 39636 hgmapfval 39637 hgmapval 39638 resubval 40058 unxpwdom3 40623 mpaaval 40679 |
Copyright terms: Public domain | W3C validator |