| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | iotabidv 6465 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-riota 7303 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-riota 7303 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ℩cio 6435 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-uni 4860 df-iota 6437 df-riota 7303 |
| This theorem is referenced by: riotaeqbidv 7306 csbriota 7318 sup0riota 9350 infval 9371 ttrcltr 9606 fin23lem27 10216 subval 11348 divval 11775 flval 13695 ceilval2 13741 cjval 15006 sqrtval 15141 qnumval 16645 qdenval 16646 lubval 18257 glbval 18270 joinval2 18282 meetval2 18296 grpinvval 18890 pj1fval 19604 pj1val 19605 q1pval 26085 coeval 26153 quotval 26225 divsval 28126 ismidb 28754 lmif 28761 islmib 28763 uspgredg2v 29200 usgredg2v 29203 frgrncvvdeqlem8 30281 frgrncvvdeqlem9 30282 grpoinvval 30498 pjhval 31372 nmopadjlei 32063 cdj3lem2 32410 cvmliftlem15 35330 cvmlift2lem4 35338 cvmlift2 35348 cvmlift3lem2 35352 cvmlift3lem4 35354 cvmlift3lem6 35356 cvmlift3lem7 35357 cvmlift3lem9 35359 cvmlift3 35360 fvtransport 36065 lshpkrlem1 39148 lshpkrlem2 39149 lshpkrlem3 39150 lshpkrcl 39154 trlset 40199 trlval 40200 cdleme27b 40406 cdleme29b 40413 cdleme31so 40417 cdleme31sn1 40419 cdleme31sn1c 40426 cdleme31fv 40428 cdlemefrs29clN 40437 cdleme40v 40507 cdlemg1cN 40625 cdlemg1cex 40626 cdlemksv 40882 cdlemkuu 40933 cdlemkid3N 40971 cdlemkid4 40972 cdlemm10N 41156 dicval 41214 dihval 41270 dochfl1 41514 lcfl7N 41539 lcfrlem8 41587 lcfrlem9 41588 lcf1o 41589 mapdhval 41762 hvmapval 41798 hvmapvalvalN 41799 hdmap1fval 41834 hdmap1vallem 41835 hdmap1val 41836 hdmap1cbv 41840 hdmapfval 41865 hdmapval 41866 hgmapffval 41923 hgmapfval 41924 hgmapval 41925 resubval 42399 redivvald 42474 unxpwdom3 43127 mpaaval 43183 |
| Copyright terms: Public domain | W3C validator |