![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 629 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | iotabidv 6463 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | df-riota 7293 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | df-riota 7293 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
6 | 3, 4, 5 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ℩cio 6429 ℩crio 7292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-uni 4853 df-iota 6431 df-riota 7293 |
This theorem is referenced by: riotaeqbidv 7296 csbriota 7309 sup0riota 9322 infval 9343 ttrcltr 9573 fin23lem27 10185 subval 11313 divval 11736 flval 13615 ceilval2 13661 cjval 14912 sqrtval 15047 qnumval 16538 qdenval 16539 lubval 18171 glbval 18184 joinval2 18196 meetval2 18210 grpinvval 18716 pj1fval 19395 pj1val 19396 q1pval 25424 coeval 25490 quotval 25558 ismidb 27428 lmif 27435 islmib 27437 uspgredg2v 27880 usgredg2v 27883 frgrncvvdeqlem8 28958 frgrncvvdeqlem9 28959 grpoinvval 29173 pjhval 30047 nmopadjlei 30738 cdj3lem2 31085 cvmliftlem15 33559 cvmlift2lem4 33567 cvmlift2 33577 cvmlift3lem2 33581 cvmlift3lem4 33583 cvmlift3lem6 33585 cvmlift3lem7 33586 cvmlift3lem9 33588 cvmlift3 33589 fvtransport 34430 lshpkrlem1 37377 lshpkrlem2 37378 lshpkrlem3 37379 lshpkrcl 37383 trlset 38429 trlval 38430 cdleme27b 38636 cdleme29b 38643 cdleme31so 38647 cdleme31sn1 38649 cdleme31sn1c 38656 cdleme31fv 38658 cdlemefrs29clN 38667 cdleme40v 38737 cdlemg1cN 38855 cdlemg1cex 38856 cdlemksv 39112 cdlemkuu 39163 cdlemkid3N 39201 cdlemkid4 39202 cdlemm10N 39386 dicval 39444 dihval 39500 dochfl1 39744 lcfl7N 39769 lcfrlem8 39817 lcfrlem9 39818 lcf1o 39819 mapdhval 39992 hvmapval 40028 hvmapvalvalN 40029 hdmap1fval 40064 hdmap1vallem 40065 hdmap1val 40066 hdmap1cbv 40070 hdmapfval 40095 hdmapval 40096 hgmapffval 40153 hgmapfval 40154 hgmapval 40155 resubval 40610 unxpwdom3 41183 mpaaval 41239 |
Copyright terms: Public domain | W3C validator |