| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | iotabidv 6495 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-riota 7344 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-riota 7344 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ℩cio 6462 ℩crio 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 df-iota 6464 df-riota 7344 |
| This theorem is referenced by: riotaeqbidv 7347 csbriota 7359 sup0riota 9417 infval 9438 ttrcltr 9669 fin23lem27 10281 subval 11412 divval 11839 flval 13756 ceilval2 13802 cjval 15068 sqrtval 15203 qnumval 16707 qdenval 16708 lubval 18315 glbval 18328 joinval2 18340 meetval2 18354 grpinvval 18912 pj1fval 19624 pj1val 19625 q1pval 26060 coeval 26128 quotval 26200 divsval 28092 ismidb 28705 lmif 28712 islmib 28714 uspgredg2v 29151 usgredg2v 29154 frgrncvvdeqlem8 30235 frgrncvvdeqlem9 30236 grpoinvval 30452 pjhval 31326 nmopadjlei 32017 cdj3lem2 32364 cvmliftlem15 35285 cvmlift2lem4 35293 cvmlift2 35303 cvmlift3lem2 35307 cvmlift3lem4 35309 cvmlift3lem6 35311 cvmlift3lem7 35312 cvmlift3lem9 35314 cvmlift3 35315 fvtransport 36020 lshpkrlem1 39103 lshpkrlem2 39104 lshpkrlem3 39105 lshpkrcl 39109 trlset 40155 trlval 40156 cdleme27b 40362 cdleme29b 40369 cdleme31so 40373 cdleme31sn1 40375 cdleme31sn1c 40382 cdleme31fv 40384 cdlemefrs29clN 40393 cdleme40v 40463 cdlemg1cN 40581 cdlemg1cex 40582 cdlemksv 40838 cdlemkuu 40889 cdlemkid3N 40927 cdlemkid4 40928 cdlemm10N 41112 dicval 41170 dihval 41226 dochfl1 41470 lcfl7N 41495 lcfrlem8 41543 lcfrlem9 41544 lcf1o 41545 mapdhval 41718 hvmapval 41754 hvmapvalvalN 41755 hdmap1fval 41790 hdmap1vallem 41791 hdmap1val 41792 hdmap1cbv 41796 hdmapfval 41821 hdmapval 41822 hgmapffval 41879 hgmapfval 41880 hgmapval 41881 resubval 42355 redivvald 42430 unxpwdom3 43084 mpaaval 43140 |
| Copyright terms: Public domain | W3C validator |