| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | iotabidv 6498 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-riota 7347 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-riota 7347 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ℩cio 6465 ℩crio 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 df-iota 6467 df-riota 7347 |
| This theorem is referenced by: riotaeqbidv 7350 csbriota 7362 sup0riota 9424 infval 9445 ttrcltr 9676 fin23lem27 10288 subval 11419 divval 11846 flval 13763 ceilval2 13809 cjval 15075 sqrtval 15210 qnumval 16714 qdenval 16715 lubval 18322 glbval 18335 joinval2 18347 meetval2 18361 grpinvval 18919 pj1fval 19631 pj1val 19632 q1pval 26067 coeval 26135 quotval 26207 divsval 28099 ismidb 28712 lmif 28719 islmib 28721 uspgredg2v 29158 usgredg2v 29161 frgrncvvdeqlem8 30242 frgrncvvdeqlem9 30243 grpoinvval 30459 pjhval 31333 nmopadjlei 32024 cdj3lem2 32371 cvmliftlem15 35292 cvmlift2lem4 35300 cvmlift2 35310 cvmlift3lem2 35314 cvmlift3lem4 35316 cvmlift3lem6 35318 cvmlift3lem7 35319 cvmlift3lem9 35321 cvmlift3 35322 fvtransport 36027 lshpkrlem1 39110 lshpkrlem2 39111 lshpkrlem3 39112 lshpkrcl 39116 trlset 40162 trlval 40163 cdleme27b 40369 cdleme29b 40376 cdleme31so 40380 cdleme31sn1 40382 cdleme31sn1c 40389 cdleme31fv 40391 cdlemefrs29clN 40400 cdleme40v 40470 cdlemg1cN 40588 cdlemg1cex 40589 cdlemksv 40845 cdlemkuu 40896 cdlemkid3N 40934 cdlemkid4 40935 cdlemm10N 41119 dicval 41177 dihval 41233 dochfl1 41477 lcfl7N 41502 lcfrlem8 41550 lcfrlem9 41551 lcf1o 41552 mapdhval 41725 hvmapval 41761 hvmapvalvalN 41762 hdmap1fval 41797 hdmap1vallem 41798 hdmap1val 41799 hdmap1cbv 41803 hdmapfval 41828 hdmapval 41829 hgmapffval 41886 hgmapfval 41887 hgmapval 41888 resubval 42362 redivvald 42437 unxpwdom3 43091 mpaaval 43147 |
| Copyright terms: Public domain | W3C validator |