![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 629 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | iotabidv 6557 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | df-riota 7404 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | df-riota 7404 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
6 | 3, 4, 5 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ℩cio 6523 ℩crio 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-iota 6525 df-riota 7404 |
This theorem is referenced by: riotaeqbidv 7407 csbriota 7420 sup0riota 9534 infval 9555 ttrcltr 9785 fin23lem27 10397 subval 11527 divval 11951 flval 13845 ceilval2 13891 cjval 15151 sqrtval 15286 qnumval 16784 qdenval 16785 lubval 18426 glbval 18439 joinval2 18451 meetval2 18465 grpinvval 19020 pj1fval 19736 pj1val 19737 q1pval 26214 coeval 26282 quotval 26352 divsval 28233 ismidb 28804 lmif 28811 islmib 28813 uspgredg2v 29259 usgredg2v 29262 frgrncvvdeqlem8 30338 frgrncvvdeqlem9 30339 grpoinvval 30555 pjhval 31429 nmopadjlei 32120 cdj3lem2 32467 cvmliftlem15 35266 cvmlift2lem4 35274 cvmlift2 35284 cvmlift3lem2 35288 cvmlift3lem4 35290 cvmlift3lem6 35292 cvmlift3lem7 35293 cvmlift3lem9 35295 cvmlift3 35296 fvtransport 35996 lshpkrlem1 39066 lshpkrlem2 39067 lshpkrlem3 39068 lshpkrcl 39072 trlset 40118 trlval 40119 cdleme27b 40325 cdleme29b 40332 cdleme31so 40336 cdleme31sn1 40338 cdleme31sn1c 40345 cdleme31fv 40347 cdlemefrs29clN 40356 cdleme40v 40426 cdlemg1cN 40544 cdlemg1cex 40545 cdlemksv 40801 cdlemkuu 40852 cdlemkid3N 40890 cdlemkid4 40891 cdlemm10N 41075 dicval 41133 dihval 41189 dochfl1 41433 lcfl7N 41458 lcfrlem8 41506 lcfrlem9 41507 lcf1o 41508 mapdhval 41681 hvmapval 41717 hvmapvalvalN 41718 hdmap1fval 41753 hdmap1vallem 41754 hdmap1val 41755 hdmap1cbv 41759 hdmapfval 41784 hdmapval 41785 hgmapffval 41842 hgmapfval 41843 hgmapval 41844 resubval 42343 unxpwdom3 43052 mpaaval 43108 |
Copyright terms: Public domain | W3C validator |