![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 627 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | iotabidv 6526 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | df-riota 7367 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | df-riota 7367 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
6 | 3, 4, 5 | 3eqtr4g 2795 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ℩cio 6492 ℩crio 7366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-in 3954 df-ss 3964 df-uni 4908 df-iota 6494 df-riota 7367 |
This theorem is referenced by: riotaeqbidv 7370 csbriota 7383 sup0riota 9462 infval 9483 ttrcltr 9713 fin23lem27 10325 subval 11455 divval 11878 flval 13763 ceilval2 13809 cjval 15053 sqrtval 15188 qnumval 16677 qdenval 16678 lubval 18313 glbval 18326 joinval2 18338 meetval2 18352 grpinvval 18901 pj1fval 19603 pj1val 19604 q1pval 25906 coeval 25972 quotval 26041 divsval 27876 ismidb 28296 lmif 28303 islmib 28305 uspgredg2v 28748 usgredg2v 28751 frgrncvvdeqlem8 29826 frgrncvvdeqlem9 29827 grpoinvval 30043 pjhval 30917 nmopadjlei 31608 cdj3lem2 31955 cvmliftlem15 34587 cvmlift2lem4 34595 cvmlift2 34605 cvmlift3lem2 34609 cvmlift3lem4 34611 cvmlift3lem6 34613 cvmlift3lem7 34614 cvmlift3lem9 34616 cvmlift3 34617 fvtransport 35308 lshpkrlem1 38283 lshpkrlem2 38284 lshpkrlem3 38285 lshpkrcl 38289 trlset 39335 trlval 39336 cdleme27b 39542 cdleme29b 39549 cdleme31so 39553 cdleme31sn1 39555 cdleme31sn1c 39562 cdleme31fv 39564 cdlemefrs29clN 39573 cdleme40v 39643 cdlemg1cN 39761 cdlemg1cex 39762 cdlemksv 40018 cdlemkuu 40069 cdlemkid3N 40107 cdlemkid4 40108 cdlemm10N 40292 dicval 40350 dihval 40406 dochfl1 40650 lcfl7N 40675 lcfrlem8 40723 lcfrlem9 40724 lcf1o 40725 mapdhval 40898 hvmapval 40934 hvmapvalvalN 40935 hdmap1fval 40970 hdmap1vallem 40971 hdmap1val 40972 hdmap1cbv 40976 hdmapfval 41001 hdmapval 41002 hgmapffval 41059 hgmapfval 41060 hgmapval 41061 resubval 41542 unxpwdom3 42139 mpaaval 42195 |
Copyright terms: Public domain | W3C validator |