![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | iotabidv 6547 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | df-riota 7388 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | df-riota 7388 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
6 | 3, 4, 5 | 3eqtr4g 2800 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ℩cio 6514 ℩crio 7387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-uni 4913 df-iota 6516 df-riota 7388 |
This theorem is referenced by: riotaeqbidv 7391 csbriota 7403 sup0riota 9503 infval 9524 ttrcltr 9754 fin23lem27 10366 subval 11497 divval 11922 flval 13831 ceilval2 13877 cjval 15138 sqrtval 15273 qnumval 16771 qdenval 16772 lubval 18414 glbval 18427 joinval2 18439 meetval2 18453 grpinvval 19011 pj1fval 19727 pj1val 19728 q1pval 26209 coeval 26277 quotval 26349 divsval 28230 ismidb 28801 lmif 28808 islmib 28810 uspgredg2v 29256 usgredg2v 29259 frgrncvvdeqlem8 30335 frgrncvvdeqlem9 30336 grpoinvval 30552 pjhval 31426 nmopadjlei 32117 cdj3lem2 32464 cvmliftlem15 35283 cvmlift2lem4 35291 cvmlift2 35301 cvmlift3lem2 35305 cvmlift3lem4 35307 cvmlift3lem6 35309 cvmlift3lem7 35310 cvmlift3lem9 35312 cvmlift3 35313 fvtransport 36014 lshpkrlem1 39092 lshpkrlem2 39093 lshpkrlem3 39094 lshpkrcl 39098 trlset 40144 trlval 40145 cdleme27b 40351 cdleme29b 40358 cdleme31so 40362 cdleme31sn1 40364 cdleme31sn1c 40371 cdleme31fv 40373 cdlemefrs29clN 40382 cdleme40v 40452 cdlemg1cN 40570 cdlemg1cex 40571 cdlemksv 40827 cdlemkuu 40878 cdlemkid3N 40916 cdlemkid4 40917 cdlemm10N 41101 dicval 41159 dihval 41215 dochfl1 41459 lcfl7N 41484 lcfrlem8 41532 lcfrlem9 41533 lcf1o 41534 mapdhval 41707 hvmapval 41743 hvmapvalvalN 41744 hdmap1fval 41779 hdmap1vallem 41780 hdmap1val 41781 hdmap1cbv 41785 hdmapfval 41810 hdmapval 41811 hgmapffval 41868 hgmapfval 41869 hgmapval 41870 resubval 42374 unxpwdom3 43084 mpaaval 43140 |
Copyright terms: Public domain | W3C validator |