| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | iotabidv 6470 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-riota 7309 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-riota 7309 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3eqtr4g 2793 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ℩cio 6440 ℩crio 7308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-uni 4859 df-iota 6442 df-riota 7309 |
| This theorem is referenced by: riotaeqbidv 7312 csbriota 7324 sup0riota 9357 infval 9378 ttrcltr 9613 fin23lem27 10226 subval 11358 divval 11785 flval 13700 ceilval2 13746 cjval 15011 sqrtval 15146 qnumval 16650 qdenval 16651 lubval 18262 glbval 18275 joinval2 18287 meetval2 18301 grpinvval 18895 pj1fval 19608 pj1val 19609 q1pval 26088 coeval 26156 quotval 26228 divsval 28129 ismidb 28757 lmif 28764 islmib 28766 uspgredg2v 29204 usgredg2v 29207 frgrncvvdeqlem8 30288 frgrncvvdeqlem9 30289 grpoinvval 30505 pjhval 31379 nmopadjlei 32070 cdj3lem2 32417 cvmliftlem15 35363 cvmlift2lem4 35371 cvmlift2 35381 cvmlift3lem2 35385 cvmlift3lem4 35387 cvmlift3lem6 35389 cvmlift3lem7 35390 cvmlift3lem9 35392 cvmlift3 35393 fvtransport 36097 lshpkrlem1 39229 lshpkrlem2 39230 lshpkrlem3 39231 lshpkrcl 39235 trlset 40280 trlval 40281 cdleme27b 40487 cdleme29b 40494 cdleme31so 40498 cdleme31sn1 40500 cdleme31sn1c 40507 cdleme31fv 40509 cdlemefrs29clN 40518 cdleme40v 40588 cdlemg1cN 40706 cdlemg1cex 40707 cdlemksv 40963 cdlemkuu 41014 cdlemkid3N 41052 cdlemkid4 41053 cdlemm10N 41237 dicval 41295 dihval 41351 dochfl1 41595 lcfl7N 41620 lcfrlem8 41668 lcfrlem9 41669 lcf1o 41670 mapdhval 41843 hvmapval 41879 hvmapvalvalN 41880 hdmap1fval 41915 hdmap1vallem 41916 hdmap1val 41917 hdmap1cbv 41921 hdmapfval 41946 hdmapval 41947 hgmapffval 42004 hgmapfval 42005 hgmapval 42006 resubval 42485 redivvald 42560 unxpwdom3 43212 mpaaval 43268 |
| Copyright terms: Public domain | W3C validator |