| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | iotabidv 6515 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-riota 7362 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-riota 7362 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3eqtr4g 2795 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ℩cio 6482 ℩crio 7361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-uni 4884 df-iota 6484 df-riota 7362 |
| This theorem is referenced by: riotaeqbidv 7365 csbriota 7377 sup0riota 9478 infval 9499 ttrcltr 9730 fin23lem27 10342 subval 11473 divval 11898 flval 13811 ceilval2 13857 cjval 15121 sqrtval 15256 qnumval 16756 qdenval 16757 lubval 18366 glbval 18379 joinval2 18391 meetval2 18405 grpinvval 18963 pj1fval 19675 pj1val 19676 q1pval 26112 coeval 26180 quotval 26252 divsval 28144 ismidb 28757 lmif 28764 islmib 28766 uspgredg2v 29203 usgredg2v 29206 frgrncvvdeqlem8 30287 frgrncvvdeqlem9 30288 grpoinvval 30504 pjhval 31378 nmopadjlei 32069 cdj3lem2 32416 cvmliftlem15 35320 cvmlift2lem4 35328 cvmlift2 35338 cvmlift3lem2 35342 cvmlift3lem4 35344 cvmlift3lem6 35346 cvmlift3lem7 35347 cvmlift3lem9 35349 cvmlift3 35350 fvtransport 36050 lshpkrlem1 39128 lshpkrlem2 39129 lshpkrlem3 39130 lshpkrcl 39134 trlset 40180 trlval 40181 cdleme27b 40387 cdleme29b 40394 cdleme31so 40398 cdleme31sn1 40400 cdleme31sn1c 40407 cdleme31fv 40409 cdlemefrs29clN 40418 cdleme40v 40488 cdlemg1cN 40606 cdlemg1cex 40607 cdlemksv 40863 cdlemkuu 40914 cdlemkid3N 40952 cdlemkid4 40953 cdlemm10N 41137 dicval 41195 dihval 41251 dochfl1 41495 lcfl7N 41520 lcfrlem8 41568 lcfrlem9 41569 lcf1o 41570 mapdhval 41743 hvmapval 41779 hvmapvalvalN 41780 hdmap1fval 41815 hdmap1vallem 41816 hdmap1val 41817 hdmap1cbv 41821 hdmapfval 41846 hdmapval 41847 hgmapffval 41904 hgmapfval 41905 hgmapval 41906 resubval 42410 unxpwdom3 43119 mpaaval 43175 |
| Copyright terms: Public domain | W3C validator |