Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | iotabidv 6442 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | df-riota 7264 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | df-riota 7264 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
6 | 3, 4, 5 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ℩cio 6408 ℩crio 7263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 df-uni 4845 df-iota 6410 df-riota 7264 |
This theorem is referenced by: riotaeqbidv 7267 csbriota 7280 sup0riota 9268 infval 9289 ttrcltr 9518 fin23lem27 10130 subval 11258 divval 11681 flval 13560 ceilval2 13606 cjval 14858 sqrtval 14993 qnumval 16486 qdenval 16487 lubval 18119 glbval 18132 joinval2 18144 meetval2 18158 grpinvval 18665 pj1fval 19345 pj1val 19346 q1pval 25363 coeval 25429 quotval 25497 ismidb 27184 lmif 27191 islmib 27193 uspgredg2v 27636 usgredg2v 27639 frgrncvvdeqlem8 28715 frgrncvvdeqlem9 28716 grpoinvval 28930 pjhval 29804 nmopadjlei 30495 cdj3lem2 30842 cvmliftlem15 33305 cvmlift2lem4 33313 cvmlift2 33323 cvmlift3lem2 33327 cvmlift3lem4 33329 cvmlift3lem6 33331 cvmlift3lem7 33332 cvmlift3lem9 33334 cvmlift3 33335 fvtransport 34379 lshpkrlem1 37166 lshpkrlem2 37167 lshpkrlem3 37168 lshpkrcl 37172 trlset 38217 trlval 38218 cdleme27b 38424 cdleme29b 38431 cdleme31so 38435 cdleme31sn1 38437 cdleme31sn1c 38444 cdleme31fv 38446 cdlemefrs29clN 38455 cdleme40v 38525 cdlemg1cN 38643 cdlemg1cex 38644 cdlemksv 38900 cdlemkuu 38951 cdlemkid3N 38989 cdlemkid4 38990 cdlemm10N 39174 dicval 39232 dihval 39288 dochfl1 39532 lcfl7N 39557 lcfrlem8 39605 lcfrlem9 39606 lcf1o 39607 mapdhval 39780 hvmapval 39816 hvmapvalvalN 39817 hdmap1fval 39852 hdmap1vallem 39853 hdmap1val 39854 hdmap1cbv 39858 hdmapfval 39883 hdmapval 39884 hgmapffval 39941 hgmapfval 39942 hgmapval 39943 resubval 40387 unxpwdom3 40958 mpaaval 41014 |
Copyright terms: Public domain | W3C validator |