Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotabidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotabidv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 628 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | iotabidv 6414 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | df-riota 7225 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | df-riota 7225 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
6 | 3, 4, 5 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ℩cio 6386 ℩crio 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-uni 4845 df-iota 6388 df-riota 7225 |
This theorem is referenced by: riotaeqbidv 7228 csbriota 7241 sup0riota 9185 infval 9206 ttrcltr 9435 fin23lem27 10068 subval 11195 divval 11618 flval 13495 ceilval2 13541 cjval 14794 sqrtval 14929 qnumval 16422 qdenval 16423 lubval 18055 glbval 18068 joinval2 18080 meetval2 18094 grpinvval 18601 pj1fval 19281 pj1val 19282 q1pval 25299 coeval 25365 quotval 25433 ismidb 27120 lmif 27127 islmib 27129 uspgredg2v 27572 usgredg2v 27575 frgrncvvdeqlem8 28649 frgrncvvdeqlem9 28650 grpoinvval 28864 pjhval 29738 nmopadjlei 30429 cdj3lem2 30776 cvmliftlem15 33239 cvmlift2lem4 33247 cvmlift2 33257 cvmlift3lem2 33261 cvmlift3lem4 33263 cvmlift3lem6 33265 cvmlift3lem7 33266 cvmlift3lem9 33268 cvmlift3 33269 fvtransport 34313 lshpkrlem1 37103 lshpkrlem2 37104 lshpkrlem3 37105 lshpkrcl 37109 trlset 38154 trlval 38155 cdleme27b 38361 cdleme29b 38368 cdleme31so 38372 cdleme31sn1 38374 cdleme31sn1c 38381 cdleme31fv 38383 cdlemefrs29clN 38392 cdleme40v 38462 cdlemg1cN 38580 cdlemg1cex 38581 cdlemksv 38837 cdlemkuu 38888 cdlemkid3N 38926 cdlemkid4 38927 cdlemm10N 39111 dicval 39169 dihval 39225 dochfl1 39469 lcfl7N 39494 lcfrlem8 39542 lcfrlem9 39543 lcf1o 39544 mapdhval 39717 hvmapval 39753 hvmapvalvalN 39754 hdmap1fval 39789 hdmap1vallem 39790 hdmap1val 39791 hdmap1cbv 39795 hdmapfval 39820 hdmapval 39821 hgmapffval 39878 hgmapfval 39879 hgmapval 39880 resubval 40330 unxpwdom3 40900 mpaaval 40956 |
Copyright terms: Public domain | W3C validator |