Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem13 Structured version   Visualization version   GIF version

Theorem cvmlift2lem13 35283
Description: Lemma for cvmlift2 35284. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
Assertion
Ref Expression
cvmlift2lem13 (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑓,𝐺,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑃,𝑓,𝑔,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑓,𝐾,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝐻(𝑔)

Proof of Theorem cvmlift2lem13
Dummy variables 𝑏 𝑐 𝑑 𝑢 𝑣 𝑎 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . 4 𝐵 = 𝐶
2 cvmlift2.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . . 4 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . . 4 (𝜑𝑃𝐵)
5 cvmlift2.i . . . 4 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . . 4 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . . 4 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
8 fveq2 6920 . . . . . 6 (𝑎 = 𝑧 → (((II ×t II) CnP 𝐶)‘𝑎) = (((II ×t II) CnP 𝐶)‘𝑧))
98eleq2d 2830 . . . . 5 (𝑎 = 𝑧 → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎) ↔ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
109cbvrabv 3454 . . . 4 {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
11 sneq 4658 . . . . . . 7 (𝑧 = 𝑏 → {𝑧} = {𝑏})
1211xpeq2d 5730 . . . . . 6 (𝑧 = 𝑏 → ((0[,]1) × {𝑧}) = ((0[,]1) × {𝑏}))
1312sseq1d 4040 . . . . 5 (𝑧 = 𝑏 → (((0[,]1) × {𝑧}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ ((0[,]1) × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
1413cbvrabv 3454 . . . 4 {𝑧 ∈ (0[,]1) ∣ ((0[,]1) × {𝑧}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}} = {𝑏 ∈ (0[,]1) ∣ ((0[,]1) × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}}
15 simpr 484 . . . . . . 7 ((𝑐 = 𝑟𝑑 = 𝑡) → 𝑑 = 𝑡)
1615eleq1d 2829 . . . . . 6 ((𝑐 = 𝑟𝑑 = 𝑡) → (𝑑 ∈ (0[,]1) ↔ 𝑡 ∈ (0[,]1)))
17 xpeq1 5714 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝑣 × {𝑏}) = (𝑢 × {𝑏}))
1817sseq1d 4040 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
19 xpeq1 5714 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝑣 × {𝑑}) = (𝑢 × {𝑑}))
2019sseq1d 4040 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
2118, 20bibi12d 345 . . . . . . . 8 (𝑣 = 𝑢 → (((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
2221cbvrexvw 3244 . . . . . . 7 (∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑐})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
23 simpl 482 . . . . . . . . . 10 ((𝑐 = 𝑟𝑑 = 𝑡) → 𝑐 = 𝑟)
2423sneqd 4660 . . . . . . . . 9 ((𝑐 = 𝑟𝑑 = 𝑡) → {𝑐} = {𝑟})
2524fveq2d 6924 . . . . . . . 8 ((𝑐 = 𝑟𝑑 = 𝑡) → ((nei‘II)‘{𝑐}) = ((nei‘II)‘{𝑟}))
2615sneqd 4660 . . . . . . . . . . 11 ((𝑐 = 𝑟𝑑 = 𝑡) → {𝑑} = {𝑡})
2726xpeq2d 5730 . . . . . . . . . 10 ((𝑐 = 𝑟𝑑 = 𝑡) → (𝑢 × {𝑑}) = (𝑢 × {𝑡}))
2827sseq1d 4040 . . . . . . . . 9 ((𝑐 = 𝑟𝑑 = 𝑡) → ((𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
2928bibi2d 342 . . . . . . . 8 ((𝑐 = 𝑟𝑑 = 𝑡) → (((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3025, 29rexeqbidv 3355 . . . . . . 7 ((𝑐 = 𝑟𝑑 = 𝑡) → (∃𝑢 ∈ ((nei‘II)‘{𝑐})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3122, 30bitrid 283 . . . . . 6 ((𝑐 = 𝑟𝑑 = 𝑡) → (∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3216, 31anbi12d 631 . . . . 5 ((𝑐 = 𝑟𝑑 = 𝑡) → ((𝑑 ∈ (0[,]1) ∧ ∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})) ↔ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))))
3332cbvopabv 5239 . . . 4 {⟨𝑐, 𝑑⟩ ∣ (𝑑 ∈ (0[,]1) ∧ ∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))} = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))}
341, 2, 3, 4, 5, 6, 7, 10, 14, 33cvmlift2lem12 35282 . . 3 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
351, 2, 3, 4, 5, 6, 7cvmlift2lem7 35277 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
36 0elunit 13529 . . . . 5 0 ∈ (0[,]1)
371, 2, 3, 4, 5, 6, 7cvmlift2lem8 35278 . . . . 5 ((𝜑 ∧ 0 ∈ (0[,]1)) → (0𝐾0) = (𝐻‘0))
3836, 37mpan2 690 . . . 4 (𝜑 → (0𝐾0) = (𝐻‘0))
391, 2, 3, 4, 5, 6cvmlift2lem2 35272 . . . . 5 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
4039simp3d 1144 . . . 4 (𝜑 → (𝐻‘0) = 𝑃)
4138, 40eqtrd 2780 . . 3 (𝜑 → (0𝐾0) = 𝑃)
42 coeq2 5883 . . . . . 6 (𝑔 = 𝐾 → (𝐹𝑔) = (𝐹𝐾))
4342eqeq1d 2742 . . . . 5 (𝑔 = 𝐾 → ((𝐹𝑔) = 𝐺 ↔ (𝐹𝐾) = 𝐺))
44 oveq 7454 . . . . . 6 (𝑔 = 𝐾 → (0𝑔0) = (0𝐾0))
4544eqeq1d 2742 . . . . 5 (𝑔 = 𝐾 → ((0𝑔0) = 𝑃 ↔ (0𝐾0) = 𝑃))
4643, 45anbi12d 631 . . . 4 (𝑔 = 𝐾 → (((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ((𝐹𝐾) = 𝐺 ∧ (0𝐾0) = 𝑃)))
4746rspcev 3635 . . 3 ((𝐾 ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹𝐾) = 𝐺 ∧ (0𝐾0) = 𝑃)) → ∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
4834, 35, 41, 47syl12anc 836 . 2 (𝜑 → ∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
49 iitop 24925 . . . . 5 II ∈ Top
50 iiuni 24926 . . . . 5 (0[,]1) = II
5149, 49, 50, 50txunii 23622 . . . 4 ((0[,]1) × (0[,]1)) = (II ×t II)
52 iiconn 24932 . . . . . 6 II ∈ Conn
53 txconn 23718 . . . . . 6 ((II ∈ Conn ∧ II ∈ Conn) → (II ×t II) ∈ Conn)
5452, 52, 53mp2an 691 . . . . 5 (II ×t II) ∈ Conn
5554a1i 11 . . . 4 (𝜑 → (II ×t II) ∈ Conn)
56 iinllyconn 35222 . . . . . 6 II ∈ 𝑛-Locally Conn
57 txconn 23718 . . . . . . 7 ((𝑥 ∈ Conn ∧ 𝑦 ∈ Conn) → (𝑥 ×t 𝑦) ∈ Conn)
5857txnlly 23666 . . . . . 6 ((II ∈ 𝑛-Locally Conn ∧ II ∈ 𝑛-Locally Conn) → (II ×t II) ∈ 𝑛-Locally Conn)
5956, 56, 58mp2an 691 . . . . 5 (II ×t II) ∈ 𝑛-Locally Conn
6059a1i 11 . . . 4 (𝜑 → (II ×t II) ∈ 𝑛-Locally Conn)
61 opelxpi 5737 . . . . . 6 ((0 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1)))
6236, 36, 61mp2an 691 . . . . 5 ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1))
6362a1i 11 . . . 4 (𝜑 → ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1)))
64 df-ov 7451 . . . . 5 (0𝐺0) = (𝐺‘⟨0, 0⟩)
655, 64eqtrdi 2796 . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘⟨0, 0⟩))
661, 51, 2, 55, 60, 63, 3, 4, 65cvmliftmo 35252 . . 3 (𝜑 → ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
67 df-ov 7451 . . . . . 6 (0𝑔0) = (𝑔‘⟨0, 0⟩)
6867eqeq1i 2745 . . . . 5 ((0𝑔0) = 𝑃 ↔ (𝑔‘⟨0, 0⟩) = 𝑃)
6968anbi2i 622 . . . 4 (((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
7069rmobii 3396 . . 3 (∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
7166, 70sylibr 234 . 2 (𝜑 → ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
72 reu5 3390 . 2 (∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ (∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ∧ ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃)))
7348, 71, 72sylanbrc 582 1 (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  ∃!wreu 3386  ∃*wrmo 3387  {crab 3443  wss 3976  {csn 4648  cop 4654   cuni 4931  {copab 5228  cmpt 5249   × cxp 5698  ccom 5704  cfv 6573  crio 7403  (class class class)co 7448  cmpo 7450  0cc0 11184  1c1 11185  [,]cicc 13410  neicnei 23126   Cn ccn 23253   CnP ccnp 23254  Conncconn 23440  𝑛-Locally cnlly 23494   ×t ctx 23589  IIcii 24920   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-cmp 23416  df-conn 23441  df-lly 23495  df-nlly 23496  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-ii 24922  df-cncf 24923  df-htpy 25021  df-phtpy 25022  df-phtpc 25043  df-pconn 35189  df-sconn 35190  df-cvm 35224
This theorem is referenced by:  cvmlift2  35284
  Copyright terms: Public domain W3C validator