Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem13 Structured version   Visualization version   GIF version

Theorem cvmlift2lem13 35380
Description: Lemma for cvmlift2 35381. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
Assertion
Ref Expression
cvmlift2lem13 (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑓,𝐺,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑃,𝑓,𝑔,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑓,𝐾,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝐻(𝑔)

Proof of Theorem cvmlift2lem13
Dummy variables 𝑏 𝑐 𝑑 𝑢 𝑣 𝑎 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . 4 𝐵 = 𝐶
2 cvmlift2.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . . 4 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . . 4 (𝜑𝑃𝐵)
5 cvmlift2.i . . . 4 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . . 4 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . . 4 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
8 fveq2 6828 . . . . . 6 (𝑎 = 𝑧 → (((II ×t II) CnP 𝐶)‘𝑎) = (((II ×t II) CnP 𝐶)‘𝑧))
98eleq2d 2819 . . . . 5 (𝑎 = 𝑧 → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎) ↔ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
109cbvrabv 3406 . . . 4 {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
11 sneq 4585 . . . . . . 7 (𝑧 = 𝑏 → {𝑧} = {𝑏})
1211xpeq2d 5649 . . . . . 6 (𝑧 = 𝑏 → ((0[,]1) × {𝑧}) = ((0[,]1) × {𝑏}))
1312sseq1d 3962 . . . . 5 (𝑧 = 𝑏 → (((0[,]1) × {𝑧}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ ((0[,]1) × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
1413cbvrabv 3406 . . . 4 {𝑧 ∈ (0[,]1) ∣ ((0[,]1) × {𝑧}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}} = {𝑏 ∈ (0[,]1) ∣ ((0[,]1) × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}}
15 simpr 484 . . . . . . 7 ((𝑐 = 𝑟𝑑 = 𝑡) → 𝑑 = 𝑡)
1615eleq1d 2818 . . . . . 6 ((𝑐 = 𝑟𝑑 = 𝑡) → (𝑑 ∈ (0[,]1) ↔ 𝑡 ∈ (0[,]1)))
17 xpeq1 5633 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝑣 × {𝑏}) = (𝑢 × {𝑏}))
1817sseq1d 3962 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
19 xpeq1 5633 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝑣 × {𝑑}) = (𝑢 × {𝑑}))
2019sseq1d 3962 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
2118, 20bibi12d 345 . . . . . . . 8 (𝑣 = 𝑢 → (((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
2221cbvrexvw 3212 . . . . . . 7 (∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑐})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
23 simpl 482 . . . . . . . . . 10 ((𝑐 = 𝑟𝑑 = 𝑡) → 𝑐 = 𝑟)
2423sneqd 4587 . . . . . . . . 9 ((𝑐 = 𝑟𝑑 = 𝑡) → {𝑐} = {𝑟})
2524fveq2d 6832 . . . . . . . 8 ((𝑐 = 𝑟𝑑 = 𝑡) → ((nei‘II)‘{𝑐}) = ((nei‘II)‘{𝑟}))
2615sneqd 4587 . . . . . . . . . . 11 ((𝑐 = 𝑟𝑑 = 𝑡) → {𝑑} = {𝑡})
2726xpeq2d 5649 . . . . . . . . . 10 ((𝑐 = 𝑟𝑑 = 𝑡) → (𝑢 × {𝑑}) = (𝑢 × {𝑡}))
2827sseq1d 3962 . . . . . . . . 9 ((𝑐 = 𝑟𝑑 = 𝑡) → ((𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
2928bibi2d 342 . . . . . . . 8 ((𝑐 = 𝑟𝑑 = 𝑡) → (((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3025, 29rexeqbidv 3314 . . . . . . 7 ((𝑐 = 𝑟𝑑 = 𝑡) → (∃𝑢 ∈ ((nei‘II)‘{𝑐})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3122, 30bitrid 283 . . . . . 6 ((𝑐 = 𝑟𝑑 = 𝑡) → (∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3216, 31anbi12d 632 . . . . 5 ((𝑐 = 𝑟𝑑 = 𝑡) → ((𝑑 ∈ (0[,]1) ∧ ∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})) ↔ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))))
3332cbvopabv 5166 . . . 4 {⟨𝑐, 𝑑⟩ ∣ (𝑑 ∈ (0[,]1) ∧ ∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))} = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))}
341, 2, 3, 4, 5, 6, 7, 10, 14, 33cvmlift2lem12 35379 . . 3 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
351, 2, 3, 4, 5, 6, 7cvmlift2lem7 35374 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
36 0elunit 13371 . . . . 5 0 ∈ (0[,]1)
371, 2, 3, 4, 5, 6, 7cvmlift2lem8 35375 . . . . 5 ((𝜑 ∧ 0 ∈ (0[,]1)) → (0𝐾0) = (𝐻‘0))
3836, 37mpan2 691 . . . 4 (𝜑 → (0𝐾0) = (𝐻‘0))
391, 2, 3, 4, 5, 6cvmlift2lem2 35369 . . . . 5 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
4039simp3d 1144 . . . 4 (𝜑 → (𝐻‘0) = 𝑃)
4138, 40eqtrd 2768 . . 3 (𝜑 → (0𝐾0) = 𝑃)
42 coeq2 5802 . . . . . 6 (𝑔 = 𝐾 → (𝐹𝑔) = (𝐹𝐾))
4342eqeq1d 2735 . . . . 5 (𝑔 = 𝐾 → ((𝐹𝑔) = 𝐺 ↔ (𝐹𝐾) = 𝐺))
44 oveq 7358 . . . . . 6 (𝑔 = 𝐾 → (0𝑔0) = (0𝐾0))
4544eqeq1d 2735 . . . . 5 (𝑔 = 𝐾 → ((0𝑔0) = 𝑃 ↔ (0𝐾0) = 𝑃))
4643, 45anbi12d 632 . . . 4 (𝑔 = 𝐾 → (((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ((𝐹𝐾) = 𝐺 ∧ (0𝐾0) = 𝑃)))
4746rspcev 3573 . . 3 ((𝐾 ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹𝐾) = 𝐺 ∧ (0𝐾0) = 𝑃)) → ∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
4834, 35, 41, 47syl12anc 836 . 2 (𝜑 → ∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
49 iitop 24801 . . . . 5 II ∈ Top
50 iiuni 24802 . . . . 5 (0[,]1) = II
5149, 49, 50, 50txunii 23509 . . . 4 ((0[,]1) × (0[,]1)) = (II ×t II)
52 iiconn 24808 . . . . . 6 II ∈ Conn
53 txconn 23605 . . . . . 6 ((II ∈ Conn ∧ II ∈ Conn) → (II ×t II) ∈ Conn)
5452, 52, 53mp2an 692 . . . . 5 (II ×t II) ∈ Conn
5554a1i 11 . . . 4 (𝜑 → (II ×t II) ∈ Conn)
56 iinllyconn 35319 . . . . . 6 II ∈ 𝑛-Locally Conn
57 txconn 23605 . . . . . . 7 ((𝑥 ∈ Conn ∧ 𝑦 ∈ Conn) → (𝑥 ×t 𝑦) ∈ Conn)
5857txnlly 23553 . . . . . 6 ((II ∈ 𝑛-Locally Conn ∧ II ∈ 𝑛-Locally Conn) → (II ×t II) ∈ 𝑛-Locally Conn)
5956, 56, 58mp2an 692 . . . . 5 (II ×t II) ∈ 𝑛-Locally Conn
6059a1i 11 . . . 4 (𝜑 → (II ×t II) ∈ 𝑛-Locally Conn)
61 opelxpi 5656 . . . . . 6 ((0 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1)))
6236, 36, 61mp2an 692 . . . . 5 ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1))
6362a1i 11 . . . 4 (𝜑 → ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1)))
64 df-ov 7355 . . . . 5 (0𝐺0) = (𝐺‘⟨0, 0⟩)
655, 64eqtrdi 2784 . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘⟨0, 0⟩))
661, 51, 2, 55, 60, 63, 3, 4, 65cvmliftmo 35349 . . 3 (𝜑 → ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
67 df-ov 7355 . . . . . 6 (0𝑔0) = (𝑔‘⟨0, 0⟩)
6867eqeq1i 2738 . . . . 5 ((0𝑔0) = 𝑃 ↔ (𝑔‘⟨0, 0⟩) = 𝑃)
6968anbi2i 623 . . . 4 (((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
7069rmobii 3355 . . 3 (∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
7166, 70sylibr 234 . 2 (𝜑 → ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
72 reu5 3349 . 2 (∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ (∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ∧ ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃)))
7348, 71, 72sylanbrc 583 1 (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  ∃!wreu 3345  ∃*wrmo 3346  {crab 3396  wss 3898  {csn 4575  cop 4581   cuni 4858  {copab 5155  cmpt 5174   × cxp 5617  ccom 5623  cfv 6486  crio 7308  (class class class)co 7352  cmpo 7354  0cc0 11013  1c1 11014  [,]cicc 13250  neicnei 23013   Cn ccn 23140   CnP ccnp 23141  Conncconn 23327  𝑛-Locally cnlly 23381   ×t ctx 23476  IIcii 24796   CovMap ccvm 35320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-ec 8630  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-cn 23143  df-cnp 23144  df-cmp 23303  df-conn 23328  df-lly 23382  df-nlly 23383  df-tx 23478  df-hmeo 23671  df-xms 24236  df-ms 24237  df-tms 24238  df-ii 24798  df-cncf 24799  df-htpy 24897  df-phtpy 24898  df-phtpc 24919  df-pconn 35286  df-sconn 35287  df-cvm 35321
This theorem is referenced by:  cvmlift2  35381
  Copyright terms: Public domain W3C validator