Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem13 Structured version   Visualization version   GIF version

Theorem cvmlift2lem13 35302
Description: Lemma for cvmlift2 35303. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
Assertion
Ref Expression
cvmlift2lem13 (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑓,𝐺,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑃,𝑓,𝑔,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑓,𝐾,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝐻(𝑔)

Proof of Theorem cvmlift2lem13
Dummy variables 𝑏 𝑐 𝑑 𝑢 𝑣 𝑎 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . 4 𝐵 = 𝐶
2 cvmlift2.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . . 4 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . . 4 (𝜑𝑃𝐵)
5 cvmlift2.i . . . 4 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . . 4 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . . 4 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
8 fveq2 6858 . . . . . 6 (𝑎 = 𝑧 → (((II ×t II) CnP 𝐶)‘𝑎) = (((II ×t II) CnP 𝐶)‘𝑧))
98eleq2d 2814 . . . . 5 (𝑎 = 𝑧 → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎) ↔ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
109cbvrabv 3416 . . . 4 {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
11 sneq 4599 . . . . . . 7 (𝑧 = 𝑏 → {𝑧} = {𝑏})
1211xpeq2d 5668 . . . . . 6 (𝑧 = 𝑏 → ((0[,]1) × {𝑧}) = ((0[,]1) × {𝑏}))
1312sseq1d 3978 . . . . 5 (𝑧 = 𝑏 → (((0[,]1) × {𝑧}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ ((0[,]1) × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
1413cbvrabv 3416 . . . 4 {𝑧 ∈ (0[,]1) ∣ ((0[,]1) × {𝑧}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}} = {𝑏 ∈ (0[,]1) ∣ ((0[,]1) × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}}
15 simpr 484 . . . . . . 7 ((𝑐 = 𝑟𝑑 = 𝑡) → 𝑑 = 𝑡)
1615eleq1d 2813 . . . . . 6 ((𝑐 = 𝑟𝑑 = 𝑡) → (𝑑 ∈ (0[,]1) ↔ 𝑡 ∈ (0[,]1)))
17 xpeq1 5652 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝑣 × {𝑏}) = (𝑢 × {𝑏}))
1817sseq1d 3978 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
19 xpeq1 5652 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝑣 × {𝑑}) = (𝑢 × {𝑑}))
2019sseq1d 3978 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
2118, 20bibi12d 345 . . . . . . . 8 (𝑣 = 𝑢 → (((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
2221cbvrexvw 3216 . . . . . . 7 (∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑐})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
23 simpl 482 . . . . . . . . . 10 ((𝑐 = 𝑟𝑑 = 𝑡) → 𝑐 = 𝑟)
2423sneqd 4601 . . . . . . . . 9 ((𝑐 = 𝑟𝑑 = 𝑡) → {𝑐} = {𝑟})
2524fveq2d 6862 . . . . . . . 8 ((𝑐 = 𝑟𝑑 = 𝑡) → ((nei‘II)‘{𝑐}) = ((nei‘II)‘{𝑟}))
2615sneqd 4601 . . . . . . . . . . 11 ((𝑐 = 𝑟𝑑 = 𝑡) → {𝑑} = {𝑡})
2726xpeq2d 5668 . . . . . . . . . 10 ((𝑐 = 𝑟𝑑 = 𝑡) → (𝑢 × {𝑑}) = (𝑢 × {𝑡}))
2827sseq1d 3978 . . . . . . . . 9 ((𝑐 = 𝑟𝑑 = 𝑡) → ((𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
2928bibi2d 342 . . . . . . . 8 ((𝑐 = 𝑟𝑑 = 𝑡) → (((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3025, 29rexeqbidv 3320 . . . . . . 7 ((𝑐 = 𝑟𝑑 = 𝑡) → (∃𝑢 ∈ ((nei‘II)‘{𝑐})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3122, 30bitrid 283 . . . . . 6 ((𝑐 = 𝑟𝑑 = 𝑡) → (∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3216, 31anbi12d 632 . . . . 5 ((𝑐 = 𝑟𝑑 = 𝑡) → ((𝑑 ∈ (0[,]1) ∧ ∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})) ↔ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))))
3332cbvopabv 5180 . . . 4 {⟨𝑐, 𝑑⟩ ∣ (𝑑 ∈ (0[,]1) ∧ ∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))} = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))}
341, 2, 3, 4, 5, 6, 7, 10, 14, 33cvmlift2lem12 35301 . . 3 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
351, 2, 3, 4, 5, 6, 7cvmlift2lem7 35296 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
36 0elunit 13430 . . . . 5 0 ∈ (0[,]1)
371, 2, 3, 4, 5, 6, 7cvmlift2lem8 35297 . . . . 5 ((𝜑 ∧ 0 ∈ (0[,]1)) → (0𝐾0) = (𝐻‘0))
3836, 37mpan2 691 . . . 4 (𝜑 → (0𝐾0) = (𝐻‘0))
391, 2, 3, 4, 5, 6cvmlift2lem2 35291 . . . . 5 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
4039simp3d 1144 . . . 4 (𝜑 → (𝐻‘0) = 𝑃)
4138, 40eqtrd 2764 . . 3 (𝜑 → (0𝐾0) = 𝑃)
42 coeq2 5822 . . . . . 6 (𝑔 = 𝐾 → (𝐹𝑔) = (𝐹𝐾))
4342eqeq1d 2731 . . . . 5 (𝑔 = 𝐾 → ((𝐹𝑔) = 𝐺 ↔ (𝐹𝐾) = 𝐺))
44 oveq 7393 . . . . . 6 (𝑔 = 𝐾 → (0𝑔0) = (0𝐾0))
4544eqeq1d 2731 . . . . 5 (𝑔 = 𝐾 → ((0𝑔0) = 𝑃 ↔ (0𝐾0) = 𝑃))
4643, 45anbi12d 632 . . . 4 (𝑔 = 𝐾 → (((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ((𝐹𝐾) = 𝐺 ∧ (0𝐾0) = 𝑃)))
4746rspcev 3588 . . 3 ((𝐾 ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹𝐾) = 𝐺 ∧ (0𝐾0) = 𝑃)) → ∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
4834, 35, 41, 47syl12anc 836 . 2 (𝜑 → ∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
49 iitop 24773 . . . . 5 II ∈ Top
50 iiuni 24774 . . . . 5 (0[,]1) = II
5149, 49, 50, 50txunii 23480 . . . 4 ((0[,]1) × (0[,]1)) = (II ×t II)
52 iiconn 24780 . . . . . 6 II ∈ Conn
53 txconn 23576 . . . . . 6 ((II ∈ Conn ∧ II ∈ Conn) → (II ×t II) ∈ Conn)
5452, 52, 53mp2an 692 . . . . 5 (II ×t II) ∈ Conn
5554a1i 11 . . . 4 (𝜑 → (II ×t II) ∈ Conn)
56 iinllyconn 35241 . . . . . 6 II ∈ 𝑛-Locally Conn
57 txconn 23576 . . . . . . 7 ((𝑥 ∈ Conn ∧ 𝑦 ∈ Conn) → (𝑥 ×t 𝑦) ∈ Conn)
5857txnlly 23524 . . . . . 6 ((II ∈ 𝑛-Locally Conn ∧ II ∈ 𝑛-Locally Conn) → (II ×t II) ∈ 𝑛-Locally Conn)
5956, 56, 58mp2an 692 . . . . 5 (II ×t II) ∈ 𝑛-Locally Conn
6059a1i 11 . . . 4 (𝜑 → (II ×t II) ∈ 𝑛-Locally Conn)
61 opelxpi 5675 . . . . . 6 ((0 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1)))
6236, 36, 61mp2an 692 . . . . 5 ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1))
6362a1i 11 . . . 4 (𝜑 → ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1)))
64 df-ov 7390 . . . . 5 (0𝐺0) = (𝐺‘⟨0, 0⟩)
655, 64eqtrdi 2780 . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘⟨0, 0⟩))
661, 51, 2, 55, 60, 63, 3, 4, 65cvmliftmo 35271 . . 3 (𝜑 → ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
67 df-ov 7390 . . . . . 6 (0𝑔0) = (𝑔‘⟨0, 0⟩)
6867eqeq1i 2734 . . . . 5 ((0𝑔0) = 𝑃 ↔ (𝑔‘⟨0, 0⟩) = 𝑃)
6968anbi2i 623 . . . 4 (((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
7069rmobii 3362 . . 3 (∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
7166, 70sylibr 234 . 2 (𝜑 → ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
72 reu5 3356 . 2 (∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ (∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ∧ ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃)))
7348, 71, 72sylanbrc 583 1 (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  ∃!wreu 3352  ∃*wrmo 3353  {crab 3405  wss 3914  {csn 4589  cop 4595   cuni 4871  {copab 5169  cmpt 5188   × cxp 5636  ccom 5642  cfv 6511  crio 7343  (class class class)co 7387  cmpo 7389  0cc0 11068  1c1 11069  [,]cicc 13309  neicnei 22984   Cn ccn 23111   CnP ccnp 23112  Conncconn 23298  𝑛-Locally cnlly 23352   ×t ctx 23447  IIcii 24768   CovMap ccvm 35242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-ec 8673  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-cmp 23274  df-conn 23299  df-lly 23353  df-nlly 23354  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-ii 24770  df-cncf 24771  df-htpy 24869  df-phtpy 24870  df-phtpc 24891  df-pconn 35208  df-sconn 35209  df-cvm 35243
This theorem is referenced by:  cvmlift2  35303
  Copyright terms: Public domain W3C validator