Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem13 Structured version   Visualization version   GIF version

Theorem cvmlift2lem13 32449
 Description: Lemma for cvmlift2 32450. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
Assertion
Ref Expression
cvmlift2lem13 (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑓,𝐺,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑃,𝑓,𝑔,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑓,𝐾,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝐻(𝑔)

Proof of Theorem cvmlift2lem13
Dummy variables 𝑏 𝑐 𝑑 𝑢 𝑣 𝑎 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . 4 𝐵 = 𝐶
2 cvmlift2.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . . 4 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . . 4 (𝜑𝑃𝐵)
5 cvmlift2.i . . . 4 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . . 4 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . . 4 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
8 fveq2 6667 . . . . . 6 (𝑎 = 𝑧 → (((II ×t II) CnP 𝐶)‘𝑎) = (((II ×t II) CnP 𝐶)‘𝑧))
98eleq2d 2903 . . . . 5 (𝑎 = 𝑧 → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎) ↔ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
109cbvrabv 3497 . . . 4 {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
11 sneq 4574 . . . . . . 7 (𝑧 = 𝑏 → {𝑧} = {𝑏})
1211xpeq2d 5584 . . . . . 6 (𝑧 = 𝑏 → ((0[,]1) × {𝑧}) = ((0[,]1) × {𝑏}))
1312sseq1d 4002 . . . . 5 (𝑧 = 𝑏 → (((0[,]1) × {𝑧}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ ((0[,]1) × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
1413cbvrabv 3497 . . . 4 {𝑧 ∈ (0[,]1) ∣ ((0[,]1) × {𝑧}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}} = {𝑏 ∈ (0[,]1) ∣ ((0[,]1) × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}}
15 simpr 485 . . . . . . 7 ((𝑐 = 𝑟𝑑 = 𝑡) → 𝑑 = 𝑡)
1615eleq1d 2902 . . . . . 6 ((𝑐 = 𝑟𝑑 = 𝑡) → (𝑑 ∈ (0[,]1) ↔ 𝑡 ∈ (0[,]1)))
17 xpeq1 5568 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝑣 × {𝑏}) = (𝑢 × {𝑏}))
1817sseq1d 4002 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
19 xpeq1 5568 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝑣 × {𝑑}) = (𝑢 × {𝑑}))
2019sseq1d 4002 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
2118, 20bibi12d 347 . . . . . . . 8 (𝑣 = 𝑢 → (((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
2221cbvrexv 3459 . . . . . . 7 (∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑐})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
23 simpl 483 . . . . . . . . . 10 ((𝑐 = 𝑟𝑑 = 𝑡) → 𝑐 = 𝑟)
2423sneqd 4576 . . . . . . . . 9 ((𝑐 = 𝑟𝑑 = 𝑡) → {𝑐} = {𝑟})
2524fveq2d 6671 . . . . . . . 8 ((𝑐 = 𝑟𝑑 = 𝑡) → ((nei‘II)‘{𝑐}) = ((nei‘II)‘{𝑟}))
2615sneqd 4576 . . . . . . . . . . 11 ((𝑐 = 𝑟𝑑 = 𝑡) → {𝑑} = {𝑡})
2726xpeq2d 5584 . . . . . . . . . 10 ((𝑐 = 𝑟𝑑 = 𝑡) → (𝑢 × {𝑑}) = (𝑢 × {𝑡}))
2827sseq1d 4002 . . . . . . . . 9 ((𝑐 = 𝑟𝑑 = 𝑡) → ((𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
2928bibi2d 344 . . . . . . . 8 ((𝑐 = 𝑟𝑑 = 𝑡) → (((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3025, 29rexeqbidv 3408 . . . . . . 7 ((𝑐 = 𝑟𝑑 = 𝑡) → (∃𝑢 ∈ ((nei‘II)‘{𝑐})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3122, 30syl5bb 284 . . . . . 6 ((𝑐 = 𝑟𝑑 = 𝑡) → (∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3216, 31anbi12d 630 . . . . 5 ((𝑐 = 𝑟𝑑 = 𝑡) → ((𝑑 ∈ (0[,]1) ∧ ∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})) ↔ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))))
3332cbvopabv 5135 . . . 4 {⟨𝑐, 𝑑⟩ ∣ (𝑑 ∈ (0[,]1) ∧ ∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))} = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))}
341, 2, 3, 4, 5, 6, 7, 10, 14, 33cvmlift2lem12 32448 . . 3 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
351, 2, 3, 4, 5, 6, 7cvmlift2lem7 32443 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
36 0elunit 12845 . . . . 5 0 ∈ (0[,]1)
371, 2, 3, 4, 5, 6, 7cvmlift2lem8 32444 . . . . 5 ((𝜑 ∧ 0 ∈ (0[,]1)) → (0𝐾0) = (𝐻‘0))
3836, 37mpan2 687 . . . 4 (𝜑 → (0𝐾0) = (𝐻‘0))
391, 2, 3, 4, 5, 6cvmlift2lem2 32438 . . . . 5 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
4039simp3d 1138 . . . 4 (𝜑 → (𝐻‘0) = 𝑃)
4138, 40eqtrd 2861 . . 3 (𝜑 → (0𝐾0) = 𝑃)
42 coeq2 5728 . . . . . 6 (𝑔 = 𝐾 → (𝐹𝑔) = (𝐹𝐾))
4342eqeq1d 2828 . . . . 5 (𝑔 = 𝐾 → ((𝐹𝑔) = 𝐺 ↔ (𝐹𝐾) = 𝐺))
44 oveq 7154 . . . . . 6 (𝑔 = 𝐾 → (0𝑔0) = (0𝐾0))
4544eqeq1d 2828 . . . . 5 (𝑔 = 𝐾 → ((0𝑔0) = 𝑃 ↔ (0𝐾0) = 𝑃))
4643, 45anbi12d 630 . . . 4 (𝑔 = 𝐾 → (((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ((𝐹𝐾) = 𝐺 ∧ (0𝐾0) = 𝑃)))
4746rspcev 3627 . . 3 ((𝐾 ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹𝐾) = 𝐺 ∧ (0𝐾0) = 𝑃)) → ∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
4834, 35, 41, 47syl12anc 834 . 2 (𝜑 → ∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
49 iitop 23406 . . . . 5 II ∈ Top
50 iiuni 23407 . . . . 5 (0[,]1) = II
5149, 49, 50, 50txunii 22120 . . . 4 ((0[,]1) × (0[,]1)) = (II ×t II)
52 iiconn 23413 . . . . . 6 II ∈ Conn
53 txconn 22216 . . . . . 6 ((II ∈ Conn ∧ II ∈ Conn) → (II ×t II) ∈ Conn)
5452, 52, 53mp2an 688 . . . . 5 (II ×t II) ∈ Conn
5554a1i 11 . . . 4 (𝜑 → (II ×t II) ∈ Conn)
56 iinllyconn 32388 . . . . . 6 II ∈ 𝑛-Locally Conn
57 txconn 22216 . . . . . . 7 ((𝑥 ∈ Conn ∧ 𝑦 ∈ Conn) → (𝑥 ×t 𝑦) ∈ Conn)
5857txnlly 22164 . . . . . 6 ((II ∈ 𝑛-Locally Conn ∧ II ∈ 𝑛-Locally Conn) → (II ×t II) ∈ 𝑛-Locally Conn)
5956, 56, 58mp2an 688 . . . . 5 (II ×t II) ∈ 𝑛-Locally Conn
6059a1i 11 . . . 4 (𝜑 → (II ×t II) ∈ 𝑛-Locally Conn)
61 opelxpi 5591 . . . . . 6 ((0 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1)))
6236, 36, 61mp2an 688 . . . . 5 ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1))
6362a1i 11 . . . 4 (𝜑 → ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1)))
64 df-ov 7151 . . . . 5 (0𝐺0) = (𝐺‘⟨0, 0⟩)
655, 64syl6eq 2877 . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘⟨0, 0⟩))
661, 51, 2, 55, 60, 63, 3, 4, 65cvmliftmo 32418 . . 3 (𝜑 → ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
67 df-ov 7151 . . . . . 6 (0𝑔0) = (𝑔‘⟨0, 0⟩)
6867eqeq1i 2831 . . . . 5 ((0𝑔0) = 𝑃 ↔ (𝑔‘⟨0, 0⟩) = 𝑃)
6968anbi2i 622 . . . 4 (((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
7069rmobii 3402 . . 3 (∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
7166, 70sylibr 235 . 2 (𝜑 → ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
72 reu5 3436 . 2 (∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ (∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ∧ ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃)))
7348, 71, 72sylanbrc 583 1 (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2107  ∃wrex 3144  ∃!wreu 3145  ∃*wrmo 3146  {crab 3147   ⊆ wss 3940  {csn 4564  ⟨cop 4570  ∪ cuni 4837  {copab 5125   ↦ cmpt 5143   × cxp 5552   ∘ ccom 5558  ‘cfv 6352  ℩crio 7105  (class class class)co 7148   ∈ cmpo 7150  0cc0 10526  1c1 10527  [,]cicc 12731  neicnei 21624   Cn ccn 21751   CnP ccnp 21752  Conncconn 21938  𝑛-Locally cnlly 21992   ×t ctx 22087  IIcii 23401   CovMap ccvm 32389 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-ec 8281  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-sum 15033  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20456  df-xmet 20457  df-met 20458  df-bl 20459  df-mopn 20460  df-cnfld 20465  df-top 21421  df-topon 21438  df-topsp 21460  df-bases 21473  df-cld 21546  df-ntr 21547  df-cls 21548  df-nei 21625  df-cn 21754  df-cnp 21755  df-cmp 21914  df-conn 21939  df-lly 21993  df-nlly 21994  df-tx 22089  df-hmeo 22282  df-xms 22848  df-ms 22849  df-tms 22850  df-ii 23403  df-htpy 23492  df-phtpy 23493  df-phtpc 23514  df-pconn 32355  df-sconn 32356  df-cvm 32390 This theorem is referenced by:  cvmlift2  32450
 Copyright terms: Public domain W3C validator