MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nomaxmo Structured version   Visualization version   GIF version

Theorem nomaxmo 27698
Description: A class of surreals has at most one maximum. (Contributed by Scott Fenton, 5-Dec-2021.)
Assertion
Ref Expression
nomaxmo (𝑆 No → ∃*𝑥𝑆𝑦𝑆 ¬ 𝑥 <s 𝑦)
Distinct variable group:   𝑥,𝑆,𝑦

Proof of Theorem nomaxmo
StepHypRef Expression
1 sltso 27676 . . . . 5 <s Or No
2 soss 5594 . . . . 5 (𝑆 No → ( <s Or No → <s Or 𝑆))
31, 2mpi 20 . . . 4 (𝑆 No → <s Or 𝑆)
4 cnvso 6290 . . . 4 ( <s Or 𝑆 <s Or 𝑆)
53, 4sylib 218 . . 3 (𝑆 No <s Or 𝑆)
6 somo 5613 . . 3 ( <s Or 𝑆 → ∃*𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥)
75, 6syl 17 . 2 (𝑆 No → ∃*𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥)
8 vex 3468 . . . . . 6 𝑦 ∈ V
9 vex 3468 . . . . . 6 𝑥 ∈ V
108, 9brcnv 5875 . . . . 5 (𝑦 <s 𝑥𝑥 <s 𝑦)
1110notbii 320 . . . 4 𝑦 <s 𝑥 ↔ ¬ 𝑥 <s 𝑦)
1211ralbii 3081 . . 3 (∀𝑦𝑆 ¬ 𝑦 <s 𝑥 ↔ ∀𝑦𝑆 ¬ 𝑥 <s 𝑦)
1312rmobii 3372 . 2 (∃*𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥 ↔ ∃*𝑥𝑆𝑦𝑆 ¬ 𝑥 <s 𝑦)
147, 13sylib 218 1 (𝑆 No → ∃*𝑥𝑆𝑦𝑆 ¬ 𝑥 <s 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wral 3050  ∃*wrmo 3363  wss 3933   class class class wbr 5125   Or wor 5573  ccnv 5666   No csur 27639   <s cslt 27640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-1o 8489  df-2o 8490  df-no 27642  df-slt 27643
This theorem is referenced by:  nosupno  27703  nosupbday  27705  nosupbnd1  27714  nosupbnd2  27716
  Copyright terms: Public domain W3C validator