![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nomaxmo | Structured version Visualization version GIF version |
Description: A class of surreals has at most one maximum. (Contributed by Scott Fenton, 5-Dec-2021.) |
Ref | Expression |
---|---|
nomaxmo | ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltso 32416 | . . . . 5 ⊢ <s Or No | |
2 | soss 5293 | . . . . 5 ⊢ (𝑆 ⊆ No → ( <s Or No → <s Or 𝑆)) | |
3 | 1, 2 | mpi 20 | . . . 4 ⊢ (𝑆 ⊆ No → <s Or 𝑆) |
4 | cnvso 5928 | . . . 4 ⊢ ( <s Or 𝑆 ↔ ◡ <s Or 𝑆) | |
5 | 3, 4 | sylib 210 | . . 3 ⊢ (𝑆 ⊆ No → ◡ <s Or 𝑆) |
6 | somo 5310 | . . 3 ⊢ (◡ <s Or 𝑆 → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥) |
8 | vex 3401 | . . . . . 6 ⊢ 𝑦 ∈ V | |
9 | vex 3401 | . . . . . 6 ⊢ 𝑥 ∈ V | |
10 | 8, 9 | brcnv 5550 | . . . . 5 ⊢ (𝑦◡ <s 𝑥 ↔ 𝑥 <s 𝑦) |
11 | 10 | notbii 312 | . . . 4 ⊢ (¬ 𝑦◡ <s 𝑥 ↔ ¬ 𝑥 <s 𝑦) |
12 | 11 | ralbii 3162 | . . 3 ⊢ (∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥 ↔ ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
13 | 12 | rmobii 3321 | . 2 ⊢ (∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥 ↔ ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
14 | 7, 13 | sylib 210 | 1 ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wral 3090 ∃*wrmo 3093 ⊆ wss 3792 class class class wbr 4886 Or wor 5273 ◡ccnv 5354 No csur 32382 <s cslt 32383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-1o 7843 df-2o 7844 df-no 32385 df-slt 32386 |
This theorem is referenced by: nosupno 32438 nosupbday 32440 nosupbnd1 32449 nosupbnd2 32451 |
Copyright terms: Public domain | W3C validator |