| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nomaxmo | Structured version Visualization version GIF version | ||
| Description: A class of surreals has at most one maximum. (Contributed by Scott Fenton, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| nomaxmo | ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltso 27604 | . . . . 5 ⊢ <s Or No | |
| 2 | soss 5551 | . . . . 5 ⊢ (𝑆 ⊆ No → ( <s Or No → <s Or 𝑆)) | |
| 3 | 1, 2 | mpi 20 | . . . 4 ⊢ (𝑆 ⊆ No → <s Or 𝑆) |
| 4 | cnvso 6240 | . . . 4 ⊢ ( <s Or 𝑆 ↔ ◡ <s Or 𝑆) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ (𝑆 ⊆ No → ◡ <s Or 𝑆) |
| 6 | somo 5570 | . . 3 ⊢ (◡ <s Or 𝑆 → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥) |
| 8 | vex 3442 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 9 | vex 3442 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 10 | 8, 9 | brcnv 5829 | . . . . 5 ⊢ (𝑦◡ <s 𝑥 ↔ 𝑥 <s 𝑦) |
| 11 | 10 | notbii 320 | . . . 4 ⊢ (¬ 𝑦◡ <s 𝑥 ↔ ¬ 𝑥 <s 𝑦) |
| 12 | 11 | ralbii 3075 | . . 3 ⊢ (∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥 ↔ ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| 13 | 12 | rmobii 3353 | . 2 ⊢ (∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥 ↔ ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| 14 | 7, 13 | sylib 218 | 1 ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wral 3044 ∃*wrmo 3344 ⊆ wss 3905 class class class wbr 5095 Or wor 5530 ◡ccnv 5622 No csur 27567 <s cslt 27568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 |
| This theorem is referenced by: nosupno 27631 nosupbday 27633 nosupbnd1 27642 nosupbnd2 27644 |
| Copyright terms: Public domain | W3C validator |