| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nomaxmo | Structured version Visualization version GIF version | ||
| Description: A class of surreals has at most one maximum. (Contributed by Scott Fenton, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| nomaxmo | ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltso 27645 | . . . . 5 ⊢ <s Or No | |
| 2 | soss 5586 | . . . . 5 ⊢ (𝑆 ⊆ No → ( <s Or No → <s Or 𝑆)) | |
| 3 | 1, 2 | mpi 20 | . . . 4 ⊢ (𝑆 ⊆ No → <s Or 𝑆) |
| 4 | cnvso 6282 | . . . 4 ⊢ ( <s Or 𝑆 ↔ ◡ <s Or 𝑆) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ (𝑆 ⊆ No → ◡ <s Or 𝑆) |
| 6 | somo 5605 | . . 3 ⊢ (◡ <s Or 𝑆 → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥) |
| 8 | vex 3468 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 9 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 10 | 8, 9 | brcnv 5867 | . . . . 5 ⊢ (𝑦◡ <s 𝑥 ↔ 𝑥 <s 𝑦) |
| 11 | 10 | notbii 320 | . . . 4 ⊢ (¬ 𝑦◡ <s 𝑥 ↔ ¬ 𝑥 <s 𝑦) |
| 12 | 11 | ralbii 3083 | . . 3 ⊢ (∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥 ↔ ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| 13 | 12 | rmobii 3372 | . 2 ⊢ (∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥 ↔ ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| 14 | 7, 13 | sylib 218 | 1 ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wral 3052 ∃*wrmo 3363 ⊆ wss 3931 class class class wbr 5124 Or wor 5565 ◡ccnv 5658 No csur 27608 <s cslt 27609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 |
| This theorem is referenced by: nosupno 27672 nosupbday 27674 nosupbnd1 27683 nosupbnd2 27685 |
| Copyright terms: Public domain | W3C validator |