| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nomaxmo | Structured version Visualization version GIF version | ||
| Description: A class of surreals has at most one maximum. (Contributed by Scott Fenton, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| nomaxmo | ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltso 27588 | . . . . 5 ⊢ <s Or No | |
| 2 | soss 5566 | . . . . 5 ⊢ (𝑆 ⊆ No → ( <s Or No → <s Or 𝑆)) | |
| 3 | 1, 2 | mpi 20 | . . . 4 ⊢ (𝑆 ⊆ No → <s Or 𝑆) |
| 4 | cnvso 6261 | . . . 4 ⊢ ( <s Or 𝑆 ↔ ◡ <s Or 𝑆) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ (𝑆 ⊆ No → ◡ <s Or 𝑆) |
| 6 | somo 5585 | . . 3 ⊢ (◡ <s Or 𝑆 → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥) |
| 8 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 9 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 10 | 8, 9 | brcnv 5846 | . . . . 5 ⊢ (𝑦◡ <s 𝑥 ↔ 𝑥 <s 𝑦) |
| 11 | 10 | notbii 320 | . . . 4 ⊢ (¬ 𝑦◡ <s 𝑥 ↔ ¬ 𝑥 <s 𝑦) |
| 12 | 11 | ralbii 3075 | . . 3 ⊢ (∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥 ↔ ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| 13 | 12 | rmobii 3362 | . 2 ⊢ (∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦◡ <s 𝑥 ↔ ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| 14 | 7, 13 | sylib 218 | 1 ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wral 3044 ∃*wrmo 3353 ⊆ wss 3914 class class class wbr 5107 Or wor 5545 ◡ccnv 5637 No csur 27551 <s cslt 27552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 |
| This theorem is referenced by: nosupno 27615 nosupbday 27617 nosupbnd1 27626 nosupbnd2 27628 |
| Copyright terms: Public domain | W3C validator |