| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > glbeldm2 | Structured version Visualization version GIF version | ||
| Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| lubeldm2.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubeldm2.l | ⊢ ≤ = (le‘𝐾) |
| glbeldm2.g | ⊢ 𝐺 = (glb‘𝐾) |
| glbeldm2.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| glbeldm2.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| Ref | Expression |
|---|---|
| glbeldm2 | ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubeldm2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lubeldm2.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 3 | glbeldm2.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | glbeldm2.p | . . . . 5 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
| 5 | glbeldm2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 6 | 1, 2, 3, 4, 5 | glbeldm 18332 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
| 7 | 6 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
| 8 | reurex 3360 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐵 𝜓) | |
| 9 | 8 | anim2i 617 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓) → (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) |
| 10 | 7, 9 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) |
| 11 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝜑) | |
| 12 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝑆 ⊆ 𝐵) | |
| 13 | 2, 1 | posglbmo 18378 | . . . . . . . 8 ⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 14 | 5, 13 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 15 | 4 | rmobii 3364 | . . . . . . 7 ⊢ (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 16 | 14, 15 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 𝜓) |
| 17 | 16 | anim1ci 616 | . . . . 5 ⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝐵 𝜓) → (∃𝑥 ∈ 𝐵 𝜓 ∧ ∃*𝑥 ∈ 𝐵 𝜓)) |
| 18 | reu5 3358 | . . . . 5 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 ↔ (∃𝑥 ∈ 𝐵 𝜓 ∧ ∃*𝑥 ∈ 𝐵 𝜓)) | |
| 19 | 17, 18 | sylibr 234 | . . . 4 ⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝐵 𝜓) → ∃!𝑥 ∈ 𝐵 𝜓) |
| 20 | 19 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → ∃!𝑥 ∈ 𝐵 𝜓) |
| 21 | 6 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → 𝑆 ∈ dom 𝐺) |
| 22 | 11, 12, 20, 21 | syl12anc 836 | . 2 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝑆 ∈ dom 𝐺) |
| 23 | 10, 22 | impbida 800 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∃!wreu 3354 ∃*wrmo 3355 ⊆ wss 3917 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 Basecbs 17186 lecple 17234 Posetcpo 18275 glbcglb 18278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-proset 18262 df-poset 18281 df-glb 18313 |
| This theorem is referenced by: glbeldm2d 48951 glbsscl 48953 |
| Copyright terms: Public domain | W3C validator |