| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > glbeldm2 | Structured version Visualization version GIF version | ||
| Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| lubeldm2.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubeldm2.l | ⊢ ≤ = (le‘𝐾) |
| glbeldm2.g | ⊢ 𝐺 = (glb‘𝐾) |
| glbeldm2.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| glbeldm2.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| Ref | Expression |
|---|---|
| glbeldm2 | ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubeldm2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lubeldm2.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 3 | glbeldm2.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | glbeldm2.p | . . . . 5 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
| 5 | glbeldm2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 6 | 1, 2, 3, 4, 5 | glbeldm 18265 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
| 7 | 6 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
| 8 | reurex 3350 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐵 𝜓) | |
| 9 | 8 | anim2i 617 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓) → (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) |
| 10 | 7, 9 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) |
| 11 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝜑) | |
| 12 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝑆 ⊆ 𝐵) | |
| 13 | 2, 1 | posglbmo 18311 | . . . . . . . 8 ⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 14 | 5, 13 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 15 | 4 | rmobii 3354 | . . . . . . 7 ⊢ (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 16 | 14, 15 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 𝜓) |
| 17 | 16 | anim1ci 616 | . . . . 5 ⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝐵 𝜓) → (∃𝑥 ∈ 𝐵 𝜓 ∧ ∃*𝑥 ∈ 𝐵 𝜓)) |
| 18 | reu5 3348 | . . . . 5 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 ↔ (∃𝑥 ∈ 𝐵 𝜓 ∧ ∃*𝑥 ∈ 𝐵 𝜓)) | |
| 19 | 17, 18 | sylibr 234 | . . . 4 ⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝐵 𝜓) → ∃!𝑥 ∈ 𝐵 𝜓) |
| 20 | 19 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → ∃!𝑥 ∈ 𝐵 𝜓) |
| 21 | 6 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → 𝑆 ∈ dom 𝐺) |
| 22 | 11, 12, 20, 21 | syl12anc 836 | . 2 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝑆 ∈ dom 𝐺) |
| 23 | 10, 22 | impbida 800 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 ∃*wrmo 3345 ⊆ wss 3897 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 Basecbs 17115 lecple 17163 Posetcpo 18208 glbcglb 18211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-proset 18195 df-poset 18214 df-glb 18246 |
| This theorem is referenced by: glbeldm2d 48990 glbsscl 48992 |
| Copyright terms: Public domain | W3C validator |