Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbeldm2 Structured version   Visualization version   GIF version

Theorem glbeldm2 46251
Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubeldm2.b 𝐵 = (Base‘𝐾)
lubeldm2.l = (le‘𝐾)
glbeldm2.g 𝐺 = (glb‘𝐾)
glbeldm2.p (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
glbeldm2.k (𝜑𝐾 ∈ Poset)
Assertion
Ref Expression
glbeldm2 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥, ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem glbeldm2
StepHypRef Expression
1 lubeldm2.b . . . . 5 𝐵 = (Base‘𝐾)
2 lubeldm2.l . . . . 5 = (le‘𝐾)
3 glbeldm2.g . . . . 5 𝐺 = (glb‘𝐾)
4 glbeldm2.p . . . . 5 (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
5 glbeldm2.k . . . . 5 (𝜑𝐾 ∈ Poset)
61, 2, 3, 4, 5glbeldm 18084 . . . 4 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
76biimpa 477 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
8 reurex 3362 . . . 4 (∃!𝑥𝐵 𝜓 → ∃𝑥𝐵 𝜓)
98anim2i 617 . . 3 ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓))
107, 9syl 17 . 2 ((𝜑𝑆 ∈ dom 𝐺) → (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓))
11 simpl 483 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → 𝜑)
12 simprl 768 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → 𝑆𝐵)
132, 1posglbmo 18130 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
145, 13sylan 580 . . . . . . 7 ((𝜑𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
154rmobii 3331 . . . . . . 7 (∃*𝑥𝐵 𝜓 ↔ ∃*𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1614, 15sylibr 233 . . . . . 6 ((𝜑𝑆𝐵) → ∃*𝑥𝐵 𝜓)
1716anim1ci 616 . . . . 5 (((𝜑𝑆𝐵) ∧ ∃𝑥𝐵 𝜓) → (∃𝑥𝐵 𝜓 ∧ ∃*𝑥𝐵 𝜓))
18 reu5 3361 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ (∃𝑥𝐵 𝜓 ∧ ∃*𝑥𝐵 𝜓))
1917, 18sylibr 233 . . . 4 (((𝜑𝑆𝐵) ∧ ∃𝑥𝐵 𝜓) → ∃!𝑥𝐵 𝜓)
2019anasss 467 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → ∃!𝑥𝐵 𝜓)
216biimpar 478 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)) → 𝑆 ∈ dom 𝐺)
2211, 12, 20, 21syl12anc 834 . 2 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → 𝑆 ∈ dom 𝐺)
2310, 22impbida 798 1 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  ∃!wreu 3066  ∃*wrmo 3067  wss 3887   class class class wbr 5074  dom cdm 5589  cfv 6433  Basecbs 16912  lecple 16969  Posetcpo 18025  glbcglb 18028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-proset 18013  df-poset 18031  df-glb 18065
This theorem is referenced by:  glbeldm2d  46253  glbsscl  46255
  Copyright terms: Public domain W3C validator