Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ineccnvmo | Structured version Visualization version GIF version |
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021.) |
Ref | Expression |
---|---|
ineccnvmo | ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5944 | . . 3 ⊢ Rel ◡𝐹 | |
2 | id 22 | . . . 4 ⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) | |
3 | 2 | inecmo 36083 | . . 3 ⊢ (Rel ◡𝐹 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥) |
5 | brcnvg 5725 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦◡𝐹𝑥 ↔ 𝑥𝐹𝑦)) | |
6 | 5 | el2v 3417 | . . . 4 ⊢ (𝑦◡𝐹𝑥 ↔ 𝑥𝐹𝑦) |
7 | 6 | rmobii 3314 | . . 3 ⊢ (∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥 ↔ ∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
8 | 7 | albii 1821 | . 2 ⊢ (∀𝑥∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥 ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
9 | 4, 8 | bitri 278 | 1 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∨ wo 844 ∀wal 1536 = wceq 1538 ∀wral 3070 ∃*wrmo 3073 Vcvv 3409 ∩ cin 3859 ∅c0 4227 class class class wbr 5036 ◡ccnv 5527 Rel wrel 5533 [cec 8303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-xp 5534 df-rel 5535 df-cnv 5536 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-ec 8307 |
This theorem is referenced by: ineccnvmo2 36088 |
Copyright terms: Public domain | W3C validator |