Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ineccnvmo Structured version   Visualization version   GIF version

Theorem ineccnvmo 38333
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021.)
Assertion
Ref Expression
ineccnvmo (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem ineccnvmo
StepHypRef Expression
1 relcnv 6102 . . 3 Rel 𝐹
2 id 22 . . . 4 (𝑦 = 𝑧𝑦 = 𝑧)
32inecmo 38331 . . 3 (Rel 𝐹 → (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥))
41, 3ax-mp 5 . 2 (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥)
5 brcnvg 5870 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝐹𝑥𝑥𝐹𝑦))
65el2v 3470 . . . 4 (𝑦𝐹𝑥𝑥𝐹𝑦)
76rmobii 3371 . . 3 (∃*𝑦𝐵 𝑦𝐹𝑥 ↔ ∃*𝑦𝐵 𝑥𝐹𝑦)
87albii 1818 . 2 (∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥 ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
94, 8bitri 275 1 (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wal 1537   = wceq 1539  wral 3050  ∃*wrmo 3362  Vcvv 3463  cin 3930  c0 4313   class class class wbr 5123  ccnv 5664  Rel wrel 5670  [cec 8725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rmo 3363  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8729
This theorem is referenced by:  ineccnvmo2  38336
  Copyright terms: Public domain W3C validator