| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ineccnvmo | Structured version Visualization version GIF version | ||
| Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021.) |
| Ref | Expression |
|---|---|
| ineccnvmo | ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6055 | . . 3 ⊢ Rel ◡𝐹 | |
| 2 | id 22 | . . . 4 ⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) | |
| 3 | 2 | inecmo 38333 | . . 3 ⊢ (Rel ◡𝐹 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥)) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥) |
| 5 | brcnvg 5822 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦◡𝐹𝑥 ↔ 𝑥𝐹𝑦)) | |
| 6 | 5 | el2v 3443 | . . . 4 ⊢ (𝑦◡𝐹𝑥 ↔ 𝑥𝐹𝑦) |
| 7 | 6 | rmobii 3351 | . . 3 ⊢ (∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥 ↔ ∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
| 8 | 7 | albii 1819 | . 2 ⊢ (∀𝑥∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥 ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
| 9 | 4, 8 | bitri 275 | 1 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∀wal 1538 = wceq 1540 ∀wral 3044 ∃*wrmo 3342 Vcvv 3436 ∩ cin 3902 ∅c0 4284 class class class wbr 5092 ◡ccnv 5618 Rel wrel 5624 [cec 8623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rmo 3343 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8627 |
| This theorem is referenced by: ineccnvmo2 38338 |
| Copyright terms: Public domain | W3C validator |