![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ineccnvmo | Structured version Visualization version GIF version |
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021.) |
Ref | Expression |
---|---|
ineccnvmo | ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6134 | . . 3 ⊢ Rel ◡𝐹 | |
2 | id 22 | . . . 4 ⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) | |
3 | 2 | inecmo 38311 | . . 3 ⊢ (Rel ◡𝐹 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥) |
5 | brcnvg 5904 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦◡𝐹𝑥 ↔ 𝑥𝐹𝑦)) | |
6 | 5 | el2v 3495 | . . . 4 ⊢ (𝑦◡𝐹𝑥 ↔ 𝑥𝐹𝑦) |
7 | 6 | rmobii 3396 | . . 3 ⊢ (∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥 ↔ ∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
8 | 7 | albii 1817 | . 2 ⊢ (∀𝑥∃*𝑦 ∈ 𝐵 𝑦◡𝐹𝑥 ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
9 | 4, 8 | bitri 275 | 1 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 ∀wal 1535 = wceq 1537 ∀wral 3067 ∃*wrmo 3387 Vcvv 3488 ∩ cin 3975 ∅c0 4352 class class class wbr 5166 ◡ccnv 5699 Rel wrel 5705 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: ineccnvmo2 38316 |
Copyright terms: Public domain | W3C validator |