Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ineccnvmo Structured version   Visualization version   GIF version

Theorem ineccnvmo 34437
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021.)
Assertion
Ref Expression
ineccnvmo (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem ineccnvmo
StepHypRef Expression
1 relcnv 5720 . . 3 Rel 𝐹
2 id 22 . . . 4 (𝑦 = 𝑧𝑦 = 𝑧)
32inecmo 34435 . . 3 (Rel 𝐹 → (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥))
41, 3ax-mp 5 . 2 (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥)
5 brcnvg 5511 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝐹𝑥𝑥𝐹𝑦))
65el2v 34308 . . . 4 (𝑦𝐹𝑥𝑥𝐹𝑦)
76rmobii 3329 . . 3 (∃*𝑦𝐵 𝑦𝐹𝑥 ↔ ∃*𝑦𝐵 𝑥𝐹𝑦)
87albii 1904 . 2 (∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥 ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
94, 8bitri 266 1 (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 197  wo 865  wal 1635   = wceq 1637  wral 3103  ∃*wrmo 3106  Vcvv 3398  cin 3775  c0 4123   class class class wbr 4851  ccnv 5317  Rel wrel 5323  [cec 7980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pr 5103
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ral 3108  df-rex 3109  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-br 4852  df-opab 4914  df-xp 5324  df-rel 5325  df-cnv 5326  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-ec 7984
This theorem is referenced by:  ineccnvmo2  34440
  Copyright terms: Public domain W3C validator