Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ineccnvmo Structured version   Visualization version   GIF version

Theorem ineccnvmo 38399
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021.)
Assertion
Ref Expression
ineccnvmo (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem ineccnvmo
StepHypRef Expression
1 relcnv 6052 . . 3 Rel 𝐹
2 id 22 . . . 4 (𝑦 = 𝑧𝑦 = 𝑧)
32inecmo 38397 . . 3 (Rel 𝐹 → (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥))
41, 3ax-mp 5 . 2 (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥)
5 brcnvg 5818 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝐹𝑥𝑥𝐹𝑦))
65el2v 3443 . . . 4 (𝑦𝐹𝑥𝑥𝐹𝑦)
76rmobii 3354 . . 3 (∃*𝑦𝐵 𝑦𝐹𝑥 ↔ ∃*𝑦𝐵 𝑥𝐹𝑦)
87albii 1820 . 2 (∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥 ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
94, 8bitri 275 1 (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wal 1539   = wceq 1541  wral 3047  ∃*wrmo 3345  Vcvv 3436  cin 3896  c0 4280   class class class wbr 5089  ccnv 5613  Rel wrel 5619  [cec 8620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624
This theorem is referenced by:  ineccnvmo2  38402
  Copyright terms: Public domain W3C validator