Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ineccnvmo Structured version   Visualization version   GIF version

Theorem ineccnvmo 38346
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021.)
Assertion
Ref Expression
ineccnvmo (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem ineccnvmo
StepHypRef Expression
1 relcnv 6078 . . 3 Rel 𝐹
2 id 22 . . . 4 (𝑦 = 𝑧𝑦 = 𝑧)
32inecmo 38344 . . 3 (Rel 𝐹 → (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥))
41, 3ax-mp 5 . 2 (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥)
5 brcnvg 5846 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝐹𝑥𝑥𝐹𝑦))
65el2v 3457 . . . 4 (𝑦𝐹𝑥𝑥𝐹𝑦)
76rmobii 3364 . . 3 (∃*𝑦𝐵 𝑦𝐹𝑥 ↔ ∃*𝑦𝐵 𝑥𝐹𝑦)
87albii 1819 . 2 (∀𝑥∃*𝑦𝐵 𝑦𝐹𝑥 ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
94, 8bitri 275 1 (∀𝑦𝐵𝑧𝐵 (𝑦 = 𝑧 ∨ ([𝑦]𝐹 ∩ [𝑧]𝐹) = ∅) ↔ ∀𝑥∃*𝑦𝐵 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wal 1538   = wceq 1540  wral 3045  ∃*wrmo 3355  Vcvv 3450  cin 3916  c0 4299   class class class wbr 5110  ccnv 5640  Rel wrel 5646  [cec 8672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676
This theorem is referenced by:  ineccnvmo2  38349
  Copyright terms: Public domain W3C validator