Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubeldm2 Structured version   Visualization version   GIF version

Theorem lubeldm2 48930
Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubeldm2.b 𝐵 = (Base‘𝐾)
lubeldm2.l = (le‘𝐾)
lubeldm2.u 𝑈 = (lub‘𝐾)
lubeldm2.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubeldm2.k (𝜑𝐾 ∈ Poset)
Assertion
Ref Expression
lubeldm2 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥, ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝑈(𝑥,𝑦,𝑧)

Proof of Theorem lubeldm2
StepHypRef Expression
1 lubeldm2.b . . . . 5 𝐵 = (Base‘𝐾)
2 lubeldm2.l . . . . 5 = (le‘𝐾)
3 lubeldm2.u . . . . 5 𝑈 = (lub‘𝐾)
4 lubeldm2.p . . . . 5 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
5 lubeldm2.k . . . . 5 (𝜑𝐾 ∈ Poset)
61, 2, 3, 4, 5lubeldm 18363 . . . 4 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
76biimpa 476 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
8 reurex 3363 . . . 4 (∃!𝑥𝐵 𝜓 → ∃𝑥𝐵 𝜓)
98anim2i 617 . . 3 ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓))
107, 9syl 17 . 2 ((𝜑𝑆 ∈ dom 𝑈) → (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓))
11 simpl 482 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → 𝜑)
12 simprl 770 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → 𝑆𝐵)
132, 1poslubmo 18421 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
145, 13sylan 580 . . . . . . 7 ((𝜑𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
154rmobii 3367 . . . . . . 7 (∃*𝑥𝐵 𝜓 ↔ ∃*𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1614, 15sylibr 234 . . . . . 6 ((𝜑𝑆𝐵) → ∃*𝑥𝐵 𝜓)
1716anim1ci 616 . . . . 5 (((𝜑𝑆𝐵) ∧ ∃𝑥𝐵 𝜓) → (∃𝑥𝐵 𝜓 ∧ ∃*𝑥𝐵 𝜓))
18 reu5 3361 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ (∃𝑥𝐵 𝜓 ∧ ∃*𝑥𝐵 𝜓))
1917, 18sylibr 234 . . . 4 (((𝜑𝑆𝐵) ∧ ∃𝑥𝐵 𝜓) → ∃!𝑥𝐵 𝜓)
2019anasss 466 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → ∃!𝑥𝐵 𝜓)
216biimpar 477 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)) → 𝑆 ∈ dom 𝑈)
2211, 12, 20, 21syl12anc 836 . 2 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → 𝑆 ∈ dom 𝑈)
2310, 22impbida 800 1 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  ∃!wreu 3357  ∃*wrmo 3358  wss 3926   class class class wbr 5119  dom cdm 5654  cfv 6531  Basecbs 17228  lecple 17278  Posetcpo 18319  lubclub 18321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-proset 18306  df-poset 18325  df-lub 18356
This theorem is referenced by:  lubeldm2d  48932  lubsscl  48934  ipolub00  48967
  Copyright terms: Public domain W3C validator