![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lubeldm2 | Structured version Visualization version GIF version |
Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubeldm2.b | ⊢ 𝐵 = (Base‘𝐾) |
lubeldm2.l | ⊢ ≤ = (le‘𝐾) |
lubeldm2.u | ⊢ 𝑈 = (lub‘𝐾) |
lubeldm2.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
lubeldm2.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
Ref | Expression |
---|---|
lubeldm2 | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubeldm2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lubeldm2.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | lubeldm2.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
4 | lubeldm2.p | . . . . 5 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
5 | lubeldm2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
6 | 1, 2, 3, 4, 5 | lubeldm 18423 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
7 | 6 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝑈) → (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
8 | reurex 3392 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐵 𝜓) | |
9 | 8 | anim2i 616 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓) → (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) |
10 | 7, 9 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝑈) → (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) |
11 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝜑) | |
12 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝑆 ⊆ 𝐵) | |
13 | 2, 1 | poslubmo 18481 | . . . . . . . 8 ⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
14 | 5, 13 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
15 | 4 | rmobii 3396 | . . . . . . 7 ⊢ (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
16 | 14, 15 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 𝜓) |
17 | 16 | anim1ci 615 | . . . . 5 ⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝐵 𝜓) → (∃𝑥 ∈ 𝐵 𝜓 ∧ ∃*𝑥 ∈ 𝐵 𝜓)) |
18 | reu5 3390 | . . . . 5 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 ↔ (∃𝑥 ∈ 𝐵 𝜓 ∧ ∃*𝑥 ∈ 𝐵 𝜓)) | |
19 | 17, 18 | sylibr 234 | . . . 4 ⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝐵 𝜓) → ∃!𝑥 ∈ 𝐵 𝜓) |
20 | 19 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → ∃!𝑥 ∈ 𝐵 𝜓) |
21 | 6 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → 𝑆 ∈ dom 𝑈) |
22 | 11, 12, 20, 21 | syl12anc 836 | . 2 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝑆 ∈ dom 𝑈) |
23 | 10, 22 | impbida 800 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∃!wreu 3386 ∃*wrmo 3387 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 Basecbs 17258 lecple 17318 Posetcpo 18377 lubclub 18379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-proset 18365 df-poset 18383 df-lub 18416 |
This theorem is referenced by: lubeldm2d 48638 lubsscl 48640 ipolub00 48665 |
Copyright terms: Public domain | W3C validator |