Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lubeldm2 | Structured version Visualization version GIF version |
Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubeldm2.b | ⊢ 𝐵 = (Base‘𝐾) |
lubeldm2.l | ⊢ ≤ = (le‘𝐾) |
lubeldm2.u | ⊢ 𝑈 = (lub‘𝐾) |
lubeldm2.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
lubeldm2.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
Ref | Expression |
---|---|
lubeldm2 | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubeldm2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lubeldm2.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | lubeldm2.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
4 | lubeldm2.p | . . . . 5 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
5 | lubeldm2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
6 | 1, 2, 3, 4, 5 | lubeldm 17986 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
7 | 6 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝑈) → (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
8 | reurex 3352 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐵 𝜓) | |
9 | 8 | anim2i 616 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓) → (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) |
10 | 7, 9 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝑈) → (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) |
11 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝜑) | |
12 | simprl 767 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝑆 ⊆ 𝐵) | |
13 | 2, 1 | poslubmo 18044 | . . . . . . . 8 ⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
14 | 5, 13 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
15 | 4 | rmobii 3322 | . . . . . . 7 ⊢ (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
16 | 14, 15 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 𝜓) |
17 | 16 | anim1ci 615 | . . . . 5 ⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝐵 𝜓) → (∃𝑥 ∈ 𝐵 𝜓 ∧ ∃*𝑥 ∈ 𝐵 𝜓)) |
18 | reu5 3351 | . . . . 5 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 ↔ (∃𝑥 ∈ 𝐵 𝜓 ∧ ∃*𝑥 ∈ 𝐵 𝜓)) | |
19 | 17, 18 | sylibr 233 | . . . 4 ⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝐵 𝜓) → ∃!𝑥 ∈ 𝐵 𝜓) |
20 | 19 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → ∃!𝑥 ∈ 𝐵 𝜓) |
21 | 6 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → 𝑆 ∈ dom 𝑈) |
22 | 11, 12, 20, 21 | syl12anc 833 | . 2 ⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓)) → 𝑆 ∈ dom 𝑈) |
23 | 10, 22 | impbida 797 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∃!wreu 3065 ∃*wrmo 3066 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 Basecbs 16840 lecple 16895 Posetcpo 17940 lubclub 17942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-proset 17928 df-poset 17946 df-lub 17979 |
This theorem is referenced by: lubeldm2d 46140 lubsscl 46142 ipolub00 46167 |
Copyright terms: Public domain | W3C validator |