Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubeldm2 Structured version   Visualization version   GIF version

Theorem lubeldm2 48995
Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubeldm2.b 𝐵 = (Base‘𝐾)
lubeldm2.l = (le‘𝐾)
lubeldm2.u 𝑈 = (lub‘𝐾)
lubeldm2.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubeldm2.k (𝜑𝐾 ∈ Poset)
Assertion
Ref Expression
lubeldm2 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥, ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝑈(𝑥,𝑦,𝑧)

Proof of Theorem lubeldm2
StepHypRef Expression
1 lubeldm2.b . . . . 5 𝐵 = (Base‘𝐾)
2 lubeldm2.l . . . . 5 = (le‘𝐾)
3 lubeldm2.u . . . . 5 𝑈 = (lub‘𝐾)
4 lubeldm2.p . . . . 5 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
5 lubeldm2.k . . . . 5 (𝜑𝐾 ∈ Poset)
61, 2, 3, 4, 5lubeldm 18257 . . . 4 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
76biimpa 476 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
8 reurex 3350 . . . 4 (∃!𝑥𝐵 𝜓 → ∃𝑥𝐵 𝜓)
98anim2i 617 . . 3 ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓))
107, 9syl 17 . 2 ((𝜑𝑆 ∈ dom 𝑈) → (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓))
11 simpl 482 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → 𝜑)
12 simprl 770 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → 𝑆𝐵)
132, 1poslubmo 18315 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
145, 13sylan 580 . . . . . . 7 ((𝜑𝑆𝐵) → ∃*𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
154rmobii 3354 . . . . . . 7 (∃*𝑥𝐵 𝜓 ↔ ∃*𝑥𝐵 (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1614, 15sylibr 234 . . . . . 6 ((𝜑𝑆𝐵) → ∃*𝑥𝐵 𝜓)
1716anim1ci 616 . . . . 5 (((𝜑𝑆𝐵) ∧ ∃𝑥𝐵 𝜓) → (∃𝑥𝐵 𝜓 ∧ ∃*𝑥𝐵 𝜓))
18 reu5 3348 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ (∃𝑥𝐵 𝜓 ∧ ∃*𝑥𝐵 𝜓))
1917, 18sylibr 234 . . . 4 (((𝜑𝑆𝐵) ∧ ∃𝑥𝐵 𝜓) → ∃!𝑥𝐵 𝜓)
2019anasss 466 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → ∃!𝑥𝐵 𝜓)
216biimpar 477 . . 3 ((𝜑 ∧ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)) → 𝑆 ∈ dom 𝑈)
2211, 12, 20, 21syl12anc 836 . 2 ((𝜑 ∧ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)) → 𝑆 ∈ dom 𝑈)
2310, 22impbida 800 1 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  ∃*wrmo 3345  wss 3897   class class class wbr 5089  dom cdm 5614  cfv 6481  Basecbs 17120  lecple 17168  Posetcpo 18213  lubclub 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-proset 18200  df-poset 18219  df-lub 18250
This theorem is referenced by:  lubeldm2d  48997  lubsscl  48999  ipolub00  49032
  Copyright terms: Public domain W3C validator