MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreulem4 Structured version   Visualization version   GIF version

Theorem 2sqreulem4 26030
Description: Lemma 4 for 2sqreu 26032 et. (Contributed by AV, 25-Jun-2023.)
Hypothesis
Ref Expression
2sqreulem4.1 (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Assertion
Ref Expression
2sqreulem4 𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑
Distinct variable groups:   𝑃,𝑏   𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝜓(𝑎,𝑏)   𝑃(𝑎)

Proof of Theorem 2sqreulem4
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 2sqreulem3 26029 . . . 4 ((𝑎 ∈ ℕ0 ∧ (𝑏 ∈ ℕ0𝑐 ∈ ℕ0)) → (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐))
21ralrimivva 3191 . . 3 (𝑎 ∈ ℕ0 → ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐))
3 2sqreulem4.1 . . . . 5 (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
43rmobii 3396 . . . 4 (∃*𝑏 ∈ ℕ0 𝜑 ↔ ∃*𝑏 ∈ ℕ0 (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
5 nfcv 2977 . . . . 5 𝑏0
6 nfcv 2977 . . . . 5 𝑐0
7 nfsbc1v 3792 . . . . . 6 𝑏[𝑐 / 𝑏]𝜓
8 nfv 1915 . . . . . 6 𝑏((𝑎↑2) + (𝑐↑2)) = 𝑃
97, 8nfan 1900 . . . . 5 𝑏([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)
10 sbceq1a 3783 . . . . . 6 (𝑏 = 𝑐 → (𝜓[𝑐 / 𝑏]𝜓))
11 oveq1 7163 . . . . . . . 8 (𝑏 = 𝑐 → (𝑏↑2) = (𝑐↑2))
1211oveq2d 7172 . . . . . . 7 (𝑏 = 𝑐 → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑐↑2)))
1312eqeq1d 2823 . . . . . 6 (𝑏 = 𝑐 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑐↑2)) = 𝑃))
1410, 13anbi12d 632 . . . . 5 (𝑏 = 𝑐 → ((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)))
155, 6, 9, 14rmo4f 3726 . . . 4 (∃*𝑏 ∈ ℕ0 (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐))
164, 15bitri 277 . . 3 (∃*𝑏 ∈ ℕ0 𝜑 ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐))
172, 16sylibr 236 . 2 (𝑎 ∈ ℕ0 → ∃*𝑏 ∈ ℕ0 𝜑)
1817rgen 3148 1 𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  ∃*wrmo 3141  [wsbc 3772  (class class class)co 7156   + caddc 10540  2c2 11693  0cn0 11898  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-seq 13371  df-exp 13431
This theorem is referenced by:  2sqreunnlem2  26031  2sqreu  26032  2sqreult  26034  2sqreultb  26035
  Copyright terms: Public domain W3C validator