![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sqreulem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for 2sqreu 27515 et. (Contributed by AV, 25-Jun-2023.) |
Ref | Expression |
---|---|
2sqreulem4.1 | ⊢ (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
Ref | Expression |
---|---|
2sqreulem4 | ⊢ ∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqreulem3 27512 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ (𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0)) → (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐)) | |
2 | 1 | ralrimivva 3200 | . . 3 ⊢ (𝑎 ∈ ℕ0 → ∀𝑏 ∈ ℕ0 ∀𝑐 ∈ ℕ0 (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐)) |
3 | 2sqreulem4.1 | . . . . 5 ⊢ (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
4 | 3 | rmobii 3386 | . . . 4 ⊢ (∃*𝑏 ∈ ℕ0 𝜑 ↔ ∃*𝑏 ∈ ℕ0 (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
5 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑏ℕ0 | |
6 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑐ℕ0 | |
7 | nfsbc1v 3811 | . . . . . 6 ⊢ Ⅎ𝑏[𝑐 / 𝑏]𝜓 | |
8 | nfv 1912 | . . . . . 6 ⊢ Ⅎ𝑏((𝑎↑2) + (𝑐↑2)) = 𝑃 | |
9 | 7, 8 | nfan 1897 | . . . . 5 ⊢ Ⅎ𝑏([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃) |
10 | sbceq1a 3802 | . . . . . 6 ⊢ (𝑏 = 𝑐 → (𝜓 ↔ [𝑐 / 𝑏]𝜓)) | |
11 | oveq1 7438 | . . . . . . . 8 ⊢ (𝑏 = 𝑐 → (𝑏↑2) = (𝑐↑2)) | |
12 | 11 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑐↑2))) |
13 | 12 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑏 = 𝑐 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) |
14 | 10, 13 | anbi12d 632 | . . . . 5 ⊢ (𝑏 = 𝑐 → ((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃))) |
15 | 5, 6, 9, 14 | rmo4f 3744 | . . . 4 ⊢ (∃*𝑏 ∈ ℕ0 (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∀𝑏 ∈ ℕ0 ∀𝑐 ∈ ℕ0 (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐)) |
16 | 4, 15 | bitri 275 | . . 3 ⊢ (∃*𝑏 ∈ ℕ0 𝜑 ↔ ∀𝑏 ∈ ℕ0 ∀𝑐 ∈ ℕ0 (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐)) |
17 | 2, 16 | sylibr 234 | . 2 ⊢ (𝑎 ∈ ℕ0 → ∃*𝑏 ∈ ℕ0 𝜑) |
18 | 17 | rgen 3061 | 1 ⊢ ∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃*wrmo 3377 [wsbc 3791 (class class class)co 7431 + caddc 11156 2c2 12319 ℕ0cn0 12524 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-seq 14040 df-exp 14100 |
This theorem is referenced by: 2sqreunnlem2 27514 2sqreu 27515 2sqreult 27517 2sqreultb 27518 |
Copyright terms: Public domain | W3C validator |