MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreulem4 Structured version   Visualization version   GIF version

Theorem 2sqreulem4 27513
Description: Lemma 4 for 2sqreu 27515 et. (Contributed by AV, 25-Jun-2023.)
Hypothesis
Ref Expression
2sqreulem4.1 (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Assertion
Ref Expression
2sqreulem4 𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑
Distinct variable groups:   𝑃,𝑏   𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝜓(𝑎,𝑏)   𝑃(𝑎)

Proof of Theorem 2sqreulem4
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 2sqreulem3 27512 . . . 4 ((𝑎 ∈ ℕ0 ∧ (𝑏 ∈ ℕ0𝑐 ∈ ℕ0)) → (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐))
21ralrimivva 3200 . . 3 (𝑎 ∈ ℕ0 → ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐))
3 2sqreulem4.1 . . . . 5 (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
43rmobii 3386 . . . 4 (∃*𝑏 ∈ ℕ0 𝜑 ↔ ∃*𝑏 ∈ ℕ0 (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
5 nfcv 2903 . . . . 5 𝑏0
6 nfcv 2903 . . . . 5 𝑐0
7 nfsbc1v 3811 . . . . . 6 𝑏[𝑐 / 𝑏]𝜓
8 nfv 1912 . . . . . 6 𝑏((𝑎↑2) + (𝑐↑2)) = 𝑃
97, 8nfan 1897 . . . . 5 𝑏([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)
10 sbceq1a 3802 . . . . . 6 (𝑏 = 𝑐 → (𝜓[𝑐 / 𝑏]𝜓))
11 oveq1 7438 . . . . . . . 8 (𝑏 = 𝑐 → (𝑏↑2) = (𝑐↑2))
1211oveq2d 7447 . . . . . . 7 (𝑏 = 𝑐 → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + (𝑐↑2)))
1312eqeq1d 2737 . . . . . 6 (𝑏 = 𝑐 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑐↑2)) = 𝑃))
1410, 13anbi12d 632 . . . . 5 (𝑏 = 𝑐 → ((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)))
155, 6, 9, 14rmo4f 3744 . . . 4 (∃*𝑏 ∈ ℕ0 (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐))
164, 15bitri 275 . . 3 (∃*𝑏 ∈ ℕ0 𝜑 ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 (((𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ([𝑐 / 𝑏]𝜓 ∧ ((𝑎↑2) + (𝑐↑2)) = 𝑃)) → 𝑏 = 𝑐))
172, 16sylibr 234 . 2 (𝑎 ∈ ℕ0 → ∃*𝑏 ∈ ℕ0 𝜑)
1817rgen 3061 1 𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  ∃*wrmo 3377  [wsbc 3791  (class class class)co 7431   + caddc 11156  2c2 12319  0cn0 12524  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100
This theorem is referenced by:  2sqreunnlem2  27514  2sqreu  27515  2sqreult  27517  2sqreultb  27518
  Copyright terms: Public domain W3C validator