Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspcegf Structured version   Visualization version   GIF version

Theorem rspcegf 42455
Description: A version of rspcev 3552 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rspcegf.1 𝑥𝜓
rspcegf.2 𝑥𝐴
rspcegf.3 𝑥𝐵
rspcegf.4 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspcegf ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)

Proof of Theorem rspcegf
StepHypRef Expression
1 rspcegf.2 . . . 4 𝑥𝐴
2 rspcegf.3 . . . . . 6 𝑥𝐵
31, 2nfel 2920 . . . . 5 𝑥 𝐴𝐵
4 rspcegf.1 . . . . 5 𝑥𝜓
53, 4nfan 1903 . . . 4 𝑥(𝐴𝐵𝜓)
6 eleq1 2826 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
7 rspcegf.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
86, 7anbi12d 630 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
91, 5, 8spcegf 3521 . . 3 (𝐴𝐵 → ((𝐴𝐵𝜓) → ∃𝑥(𝑥𝐵𝜑)))
109anabsi5 665 . 2 ((𝐴𝐵𝜓) → ∃𝑥(𝑥𝐵𝜑))
11 df-rex 3069 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
1210, 11sylibr 233 1 ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wnf 1787  wcel 2108  wnfc 2886  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rex 3069  df-v 3424
This theorem is referenced by:  rspcef  42509  stoweidlem46  43477
  Copyright terms: Public domain W3C validator