Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem46 Structured version   Visualization version   GIF version

Theorem stoweidlem46 40832
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem46.1 𝑡𝑈
stoweidlem46.2 𝑄
stoweidlem46.3 𝑞𝜑
stoweidlem46.4 𝑡𝜑
stoweidlem46.5 𝐾 = (topGen‘ran (,))
stoweidlem46.6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem46.7 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem46.8 𝑇 = 𝐽
stoweidlem46.9 (𝜑𝐽 ∈ Comp)
stoweidlem46.10 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem46.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem46.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem46.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem46.14 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem46.15 (𝜑𝑈𝐽)
stoweidlem46.16 (𝜑𝑍𝑈)
stoweidlem46.17 (𝜑𝑇 ∈ V)
Assertion
Ref Expression
stoweidlem46 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝑇   𝑓,𝑞,𝑔,𝑡,𝑇   𝑓,𝑟,𝑞,𝑡,𝑇   𝑥,𝑓,𝑞,𝑡,𝑇   𝐴,𝑓,𝑔,,𝑡   𝑄,𝑓,𝑔   𝑈,𝑓,𝑔,𝑞   𝑓,𝑍,𝑔,,𝑡   𝜑,𝑓,𝑔   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   𝐴,𝑞,𝑟   𝑍,𝑞,𝑥   𝑈,𝑟   𝜑,𝑟   𝑡,𝐽,𝑤   𝑡,𝐾   𝑤,𝑄   𝑥,𝐴   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑡,,𝑞)   𝐴(𝑤)   𝑄(𝑥,𝑡,,𝑟,𝑞)   𝑈(𝑤,𝑡,)   𝐽(𝑥,𝑓,𝑔,,𝑟,𝑞)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem46
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem46.3 . . . . . . . 8 𝑞𝜑
2 nfv 2009 . . . . . . . 8 𝑞 𝑠 ∈ (𝑇𝑈)
31, 2nfan 1998 . . . . . . 7 𝑞(𝜑𝑠 ∈ (𝑇𝑈))
4 stoweidlem46.4 . . . . . . . 8 𝑡𝜑
5 nfcv 2907 . . . . . . . . . 10 𝑡𝑇
6 stoweidlem46.1 . . . . . . . . . 10 𝑡𝑈
75, 6nfdif 3893 . . . . . . . . 9 𝑡(𝑇𝑈)
87nfel2 2924 . . . . . . . 8 𝑡 𝑠 ∈ (𝑇𝑈)
94, 8nfan 1998 . . . . . . 7 𝑡(𝜑𝑠 ∈ (𝑇𝑈))
10 stoweidlem46.2 . . . . . . 7 𝑄
11 stoweidlem46.5 . . . . . . 7 𝐾 = (topGen‘ran (,))
12 stoweidlem46.6 . . . . . . 7 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
13 stoweidlem46.8 . . . . . . 7 𝑇 = 𝐽
14 stoweidlem46.9 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
1514adantr 472 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝐽 ∈ Comp)
16 stoweidlem46.10 . . . . . . . 8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
1716adantr 472 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝐴 ⊆ (𝐽 Cn 𝐾))
18 stoweidlem46.11 . . . . . . . 8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
19183adant1r 1223 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
20 stoweidlem46.12 . . . . . . . 8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
21203adant1r 1223 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
22 stoweidlem46.13 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
2322adantlr 706 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
24 stoweidlem46.14 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
2524adantlr 706 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
26 stoweidlem46.15 . . . . . . . 8 (𝜑𝑈𝐽)
2726adantr 472 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑈𝐽)
28 stoweidlem46.16 . . . . . . . 8 (𝜑𝑍𝑈)
2928adantr 472 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑍𝑈)
30 simpr 477 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑠 ∈ (𝑇𝑈))
313, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30stoweidlem43 40829 . . . . . 6 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃(𝑄 ∧ 0 < (𝑠)))
32 nfv 2009 . . . . . . 7 𝑔(𝑄 ∧ 0 < (𝑠))
3310nfel2 2924 . . . . . . . 8 𝑔𝑄
34 nfv 2009 . . . . . . . 8 0 < (𝑔𝑠)
3533, 34nfan 1998 . . . . . . 7 (𝑔𝑄 ∧ 0 < (𝑔𝑠))
36 eleq1 2832 . . . . . . . 8 ( = 𝑔 → (𝑄𝑔𝑄))
37 fveq1 6374 . . . . . . . . 9 ( = 𝑔 → (𝑠) = (𝑔𝑠))
3837breq2d 4821 . . . . . . . 8 ( = 𝑔 → (0 < (𝑠) ↔ 0 < (𝑔𝑠)))
3936, 38anbi12d 624 . . . . . . 7 ( = 𝑔 → ((𝑄 ∧ 0 < (𝑠)) ↔ (𝑔𝑄 ∧ 0 < (𝑔𝑠))))
4032, 35, 39cbvex 2377 . . . . . 6 (∃(𝑄 ∧ 0 < (𝑠)) ↔ ∃𝑔(𝑔𝑄 ∧ 0 < (𝑔𝑠)))
4131, 40sylib 209 . . . . 5 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃𝑔(𝑔𝑄 ∧ 0 < (𝑔𝑠)))
42 stoweidlem46.17 . . . . . . . 8 (𝜑𝑇 ∈ V)
43 rabexg 4972 . . . . . . . 8 (𝑇 ∈ V → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
4442, 43syl 17 . . . . . . 7 (𝜑 → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
4544ad2antrr 717 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
46 eldifi 3894 . . . . . . . 8 (𝑠 ∈ (𝑇𝑈) → 𝑠𝑇)
4746ad2antlr 718 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑠𝑇)
48 simprr 789 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 0 < (𝑔𝑠))
49 fveq2 6375 . . . . . . . . 9 (𝑡 = 𝑠 → (𝑔𝑡) = (𝑔𝑠))
5049breq2d 4821 . . . . . . . 8 (𝑡 = 𝑠 → (0 < (𝑔𝑡) ↔ 0 < (𝑔𝑠)))
5150elrab 3519 . . . . . . 7 (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ↔ (𝑠𝑇 ∧ 0 < (𝑔𝑠)))
5247, 48, 51sylanbrc 578 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
53 simpll 783 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝜑)
5416adantr 472 . . . . . . . . . . 11 ((𝜑𝑔𝑄) → 𝐴 ⊆ (𝐽 Cn 𝐾))
55 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑔𝑄) → 𝑔𝑄)
5655, 12syl6eleq 2854 . . . . . . . . . . . . 13 ((𝜑𝑔𝑄) → 𝑔 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
57 fveq1 6374 . . . . . . . . . . . . . . . 16 ( = 𝑔 → (𝑍) = (𝑔𝑍))
5857eqeq1d 2767 . . . . . . . . . . . . . . 15 ( = 𝑔 → ((𝑍) = 0 ↔ (𝑔𝑍) = 0))
59 fveq1 6374 . . . . . . . . . . . . . . . . . 18 ( = 𝑔 → (𝑡) = (𝑔𝑡))
6059breq2d 4821 . . . . . . . . . . . . . . . . 17 ( = 𝑔 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑔𝑡)))
6159breq1d 4819 . . . . . . . . . . . . . . . . 17 ( = 𝑔 → ((𝑡) ≤ 1 ↔ (𝑔𝑡) ≤ 1))
6260, 61anbi12d 624 . . . . . . . . . . . . . . . 16 ( = 𝑔 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
6362ralbidv 3133 . . . . . . . . . . . . . . 15 ( = 𝑔 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
6458, 63anbi12d 624 . . . . . . . . . . . . . 14 ( = 𝑔 → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6564elrab 3519 . . . . . . . . . . . . 13 (𝑔 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ (𝑔𝐴 ∧ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6656, 65sylib 209 . . . . . . . . . . . 12 ((𝜑𝑔𝑄) → (𝑔𝐴 ∧ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6766simpld 488 . . . . . . . . . . 11 ((𝜑𝑔𝑄) → 𝑔𝐴)
6854, 67sseldd 3762 . . . . . . . . . 10 ((𝜑𝑔𝑄) → 𝑔 ∈ (𝐽 Cn 𝐾))
6968ad2ant2r 753 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑔 ∈ (𝐽 Cn 𝐾))
70 nfcv 2907 . . . . . . . . . 10 𝑡0
71 nfcv 2907 . . . . . . . . . 10 𝑡𝑔
72 nfv 2009 . . . . . . . . . . 11 𝑡 𝑔 ∈ (𝐽 Cn 𝐾)
734, 72nfan 1998 . . . . . . . . . 10 𝑡(𝜑𝑔 ∈ (𝐽 Cn 𝐾))
74 eqid 2765 . . . . . . . . . 10 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
75 0xr 10340 . . . . . . . . . . 11 0 ∈ ℝ*
7675a1i 11 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → 0 ∈ ℝ*)
77 simpr 477 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → 𝑔 ∈ (𝐽 Cn 𝐾))
7870, 71, 73, 11, 13, 74, 76, 77rfcnpre1 39762 . . . . . . . . 9 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽)
7953, 69, 78syl2anc 579 . . . . . . . 8 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽)
80 eqidd 2766 . . . . . . . . . 10 ((𝜑𝑔𝑄) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
81 nfv 2009 . . . . . . . . . . 11 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
82 nfcv 2907 . . . . . . . . . . 11 𝑔
8359breq2d 4821 . . . . . . . . . . . . 13 ( = 𝑔 → (0 < (𝑡) ↔ 0 < (𝑔𝑡)))
8483rabbidv 3338 . . . . . . . . . . . 12 ( = 𝑔 → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
8584eqeq2d 2775 . . . . . . . . . . 11 ( = 𝑔 → ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}))
8681, 82, 10, 85rspcegf 39766 . . . . . . . . . 10 ((𝑔𝑄 ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
8755, 80, 86syl2anc 579 . . . . . . . . 9 ((𝜑𝑔𝑄) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
8887ad2ant2r 753 . . . . . . . 8 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
89 eqeq1 2769 . . . . . . . . . 10 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9089rexbidv 3199 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9190elrab 3519 . . . . . . . 8 ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽 ∧ ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9279, 88, 91sylanbrc 578 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
93 stoweidlem46.7 . . . . . . 7 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9492, 93syl6eleqr 2855 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)
95 nfcv 2907 . . . . . . . 8 𝑤{𝑡𝑇 ∣ 0 < (𝑔𝑡)}
96 nfv 2009 . . . . . . . . 9 𝑤 𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
97 nfrab1 3270 . . . . . . . . . . 11 𝑤{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9893, 97nfcxfr 2905 . . . . . . . . . 10 𝑤𝑊
9998nfel2 2924 . . . . . . . . 9 𝑤{𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊
10096, 99nfan 1998 . . . . . . . 8 𝑤(𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)
101 eleq2 2833 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑠𝑤𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)}))
102 eleq1 2832 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑤𝑊 ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊))
103101, 102anbi12d 624 . . . . . . . 8 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → ((𝑠𝑤𝑤𝑊) ↔ (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)))
10495, 100, 103spcegf 3441 . . . . . . 7 ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V → ((𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊) → ∃𝑤(𝑠𝑤𝑤𝑊)))
105104imp 395 . . . . . 6 (({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V ∧ (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)) → ∃𝑤(𝑠𝑤𝑤𝑊))
10645, 52, 94, 105syl12anc 865 . . . . 5 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → ∃𝑤(𝑠𝑤𝑤𝑊))
10741, 106exlimddv 2030 . . . 4 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃𝑤(𝑠𝑤𝑤𝑊))
108 nfcv 2907 . . . . 5 𝑤𝑠
109108, 98elunif 39759 . . . 4 (𝑠 𝑊 ↔ ∃𝑤(𝑠𝑤𝑤𝑊))
110107, 109sylibr 225 . . 3 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑠 𝑊)
111110ex 401 . 2 (𝜑 → (𝑠 ∈ (𝑇𝑈) → 𝑠 𝑊))
112111ssrdv 3767 1 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wex 1874  wnf 1878  wcel 2155  wnfc 2894  wne 2937  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  cdif 3729  wss 3732   cuni 4594   class class class wbr 4809  cmpt 4888  ran crn 5278  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  *cxr 10327   < clt 10328  cle 10329  (,)cioo 12377  topGenctg 16366   Cn ccn 21308  Compccmp 21469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cn 21311  df-cnp 21312  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-xms 22404  df-ms 22405  df-tms 22406
This theorem is referenced by:  stoweidlem50  40836
  Copyright terms: Public domain W3C validator