Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem46 Structured version   Visualization version   GIF version

Theorem stoweidlem46 46037
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem46.1 𝑡𝑈
stoweidlem46.2 𝑄
stoweidlem46.3 𝑞𝜑
stoweidlem46.4 𝑡𝜑
stoweidlem46.5 𝐾 = (topGen‘ran (,))
stoweidlem46.6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem46.7 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem46.8 𝑇 = 𝐽
stoweidlem46.9 (𝜑𝐽 ∈ Comp)
stoweidlem46.10 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem46.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem46.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem46.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem46.14 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem46.15 (𝜑𝑈𝐽)
stoweidlem46.16 (𝜑𝑍𝑈)
stoweidlem46.17 (𝜑𝑇 ∈ V)
Assertion
Ref Expression
stoweidlem46 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝑇   𝑓,𝑞,𝑔,𝑡,𝑇   𝑓,𝑟,𝑞,𝑡,𝑇   𝑥,𝑓,𝑞,𝑡,𝑇   𝐴,𝑓,𝑔,,𝑡   𝑄,𝑓,𝑔   𝑈,𝑓,𝑔,𝑞   𝑓,𝑍,𝑔,,𝑡   𝜑,𝑓,𝑔   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   𝐴,𝑞,𝑟   𝑍,𝑞,𝑥   𝑈,𝑟   𝜑,𝑟   𝑡,𝐽,𝑤   𝑡,𝐾   𝑤,𝑄   𝑥,𝐴   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑡,,𝑞)   𝐴(𝑤)   𝑄(𝑥,𝑡,,𝑟,𝑞)   𝑈(𝑤,𝑡,)   𝐽(𝑥,𝑓,𝑔,,𝑟,𝑞)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem46
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem46.3 . . . . . . . 8 𝑞𝜑
2 nfv 1914 . . . . . . . 8 𝑞 𝑠 ∈ (𝑇𝑈)
31, 2nfan 1899 . . . . . . 7 𝑞(𝜑𝑠 ∈ (𝑇𝑈))
4 stoweidlem46.4 . . . . . . . 8 𝑡𝜑
5 nfcv 2891 . . . . . . . . . 10 𝑡𝑇
6 stoweidlem46.1 . . . . . . . . . 10 𝑡𝑈
75, 6nfdif 4080 . . . . . . . . 9 𝑡(𝑇𝑈)
87nfel2 2910 . . . . . . . 8 𝑡 𝑠 ∈ (𝑇𝑈)
94, 8nfan 1899 . . . . . . 7 𝑡(𝜑𝑠 ∈ (𝑇𝑈))
10 stoweidlem46.2 . . . . . . 7 𝑄
11 stoweidlem46.5 . . . . . . 7 𝐾 = (topGen‘ran (,))
12 stoweidlem46.6 . . . . . . 7 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
13 stoweidlem46.8 . . . . . . 7 𝑇 = 𝐽
14 stoweidlem46.9 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
1514adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝐽 ∈ Comp)
16 stoweidlem46.10 . . . . . . . 8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
1716adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝐴 ⊆ (𝐽 Cn 𝐾))
18 stoweidlem46.11 . . . . . . . 8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
19183adant1r 1178 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
20 stoweidlem46.12 . . . . . . . 8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
21203adant1r 1178 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
22 stoweidlem46.13 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
2322adantlr 715 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
24 stoweidlem46.14 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
2524adantlr 715 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
26 stoweidlem46.15 . . . . . . . 8 (𝜑𝑈𝐽)
2726adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑈𝐽)
28 stoweidlem46.16 . . . . . . . 8 (𝜑𝑍𝑈)
2928adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑍𝑈)
30 simpr 484 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑠 ∈ (𝑇𝑈))
313, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30stoweidlem43 46034 . . . . . 6 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃(𝑄 ∧ 0 < (𝑠)))
32 nfv 1914 . . . . . . 7 𝑔(𝑄 ∧ 0 < (𝑠))
3310nfel2 2910 . . . . . . . 8 𝑔𝑄
34 nfv 1914 . . . . . . . 8 0 < (𝑔𝑠)
3533, 34nfan 1899 . . . . . . 7 (𝑔𝑄 ∧ 0 < (𝑔𝑠))
36 eleq1 2816 . . . . . . . 8 ( = 𝑔 → (𝑄𝑔𝑄))
37 fveq1 6821 . . . . . . . . 9 ( = 𝑔 → (𝑠) = (𝑔𝑠))
3837breq2d 5104 . . . . . . . 8 ( = 𝑔 → (0 < (𝑠) ↔ 0 < (𝑔𝑠)))
3936, 38anbi12d 632 . . . . . . 7 ( = 𝑔 → ((𝑄 ∧ 0 < (𝑠)) ↔ (𝑔𝑄 ∧ 0 < (𝑔𝑠))))
4032, 35, 39cbvexv1 2340 . . . . . 6 (∃(𝑄 ∧ 0 < (𝑠)) ↔ ∃𝑔(𝑔𝑄 ∧ 0 < (𝑔𝑠)))
4131, 40sylib 218 . . . . 5 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃𝑔(𝑔𝑄 ∧ 0 < (𝑔𝑠)))
42 stoweidlem46.17 . . . . . . . 8 (𝜑𝑇 ∈ V)
43 rabexg 5276 . . . . . . . 8 (𝑇 ∈ V → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
4442, 43syl 17 . . . . . . 7 (𝜑 → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
4544ad2antrr 726 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
46 eldifi 4082 . . . . . . . 8 (𝑠 ∈ (𝑇𝑈) → 𝑠𝑇)
4746ad2antlr 727 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑠𝑇)
48 simprr 772 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 0 < (𝑔𝑠))
49 fveq2 6822 . . . . . . . . 9 (𝑡 = 𝑠 → (𝑔𝑡) = (𝑔𝑠))
5049breq2d 5104 . . . . . . . 8 (𝑡 = 𝑠 → (0 < (𝑔𝑡) ↔ 0 < (𝑔𝑠)))
5150elrab 3648 . . . . . . 7 (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ↔ (𝑠𝑇 ∧ 0 < (𝑔𝑠)))
5247, 48, 51sylanbrc 583 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
53 simpll 766 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝜑)
5416adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝑄) → 𝐴 ⊆ (𝐽 Cn 𝐾))
55 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑔𝑄) → 𝑔𝑄)
5655, 12eleqtrdi 2838 . . . . . . . . . . . . 13 ((𝜑𝑔𝑄) → 𝑔 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
57 fveq1 6821 . . . . . . . . . . . . . . . 16 ( = 𝑔 → (𝑍) = (𝑔𝑍))
5857eqeq1d 2731 . . . . . . . . . . . . . . 15 ( = 𝑔 → ((𝑍) = 0 ↔ (𝑔𝑍) = 0))
59 fveq1 6821 . . . . . . . . . . . . . . . . . 18 ( = 𝑔 → (𝑡) = (𝑔𝑡))
6059breq2d 5104 . . . . . . . . . . . . . . . . 17 ( = 𝑔 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑔𝑡)))
6159breq1d 5102 . . . . . . . . . . . . . . . . 17 ( = 𝑔 → ((𝑡) ≤ 1 ↔ (𝑔𝑡) ≤ 1))
6260, 61anbi12d 632 . . . . . . . . . . . . . . . 16 ( = 𝑔 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
6362ralbidv 3152 . . . . . . . . . . . . . . 15 ( = 𝑔 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
6458, 63anbi12d 632 . . . . . . . . . . . . . 14 ( = 𝑔 → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6564elrab 3648 . . . . . . . . . . . . 13 (𝑔 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ (𝑔𝐴 ∧ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6656, 65sylib 218 . . . . . . . . . . . 12 ((𝜑𝑔𝑄) → (𝑔𝐴 ∧ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6766simpld 494 . . . . . . . . . . 11 ((𝜑𝑔𝑄) → 𝑔𝐴)
6854, 67sseldd 3936 . . . . . . . . . 10 ((𝜑𝑔𝑄) → 𝑔 ∈ (𝐽 Cn 𝐾))
6968ad2ant2r 747 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑔 ∈ (𝐽 Cn 𝐾))
70 nfcv 2891 . . . . . . . . . 10 𝑡0
71 nfcv 2891 . . . . . . . . . 10 𝑡𝑔
72 nfv 1914 . . . . . . . . . . 11 𝑡 𝑔 ∈ (𝐽 Cn 𝐾)
734, 72nfan 1899 . . . . . . . . . 10 𝑡(𝜑𝑔 ∈ (𝐽 Cn 𝐾))
74 eqid 2729 . . . . . . . . . 10 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
75 0xr 11162 . . . . . . . . . . 11 0 ∈ ℝ*
7675a1i 11 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → 0 ∈ ℝ*)
77 simpr 484 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → 𝑔 ∈ (𝐽 Cn 𝐾))
7870, 71, 73, 11, 13, 74, 76, 77rfcnpre1 45007 . . . . . . . . 9 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽)
7953, 69, 78syl2anc 584 . . . . . . . 8 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽)
80 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑔𝑄) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
81 nfv 1914 . . . . . . . . . . 11 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
82 nfcv 2891 . . . . . . . . . . 11 𝑔
8359breq2d 5104 . . . . . . . . . . . . 13 ( = 𝑔 → (0 < (𝑡) ↔ 0 < (𝑔𝑡)))
8483rabbidv 3402 . . . . . . . . . . . 12 ( = 𝑔 → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
8584eqeq2d 2740 . . . . . . . . . . 11 ( = 𝑔 → ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}))
8681, 82, 10, 85rspcegf 45011 . . . . . . . . . 10 ((𝑔𝑄 ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
8755, 80, 86syl2anc 584 . . . . . . . . 9 ((𝜑𝑔𝑄) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
8887ad2ant2r 747 . . . . . . . 8 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
89 eqeq1 2733 . . . . . . . . . 10 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9089rexbidv 3153 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9190elrab 3648 . . . . . . . 8 ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽 ∧ ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9279, 88, 91sylanbrc 583 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
93 stoweidlem46.7 . . . . . . 7 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9492, 93eleqtrrdi 2839 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)
95 nfcv 2891 . . . . . . . 8 𝑤{𝑡𝑇 ∣ 0 < (𝑔𝑡)}
96 nfv 1914 . . . . . . . . 9 𝑤 𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
97 nfrab1 3415 . . . . . . . . . . 11 𝑤{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9893, 97nfcxfr 2889 . . . . . . . . . 10 𝑤𝑊
9998nfel2 2910 . . . . . . . . 9 𝑤{𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊
10096, 99nfan 1899 . . . . . . . 8 𝑤(𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)
101 eleq2 2817 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑠𝑤𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)}))
102 eleq1 2816 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑤𝑊 ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊))
103101, 102anbi12d 632 . . . . . . . 8 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → ((𝑠𝑤𝑤𝑊) ↔ (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)))
10495, 100, 103spcegf 3547 . . . . . . 7 ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V → ((𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊) → ∃𝑤(𝑠𝑤𝑤𝑊)))
105104imp 406 . . . . . 6 (({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V ∧ (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)) → ∃𝑤(𝑠𝑤𝑤𝑊))
10645, 52, 94, 105syl12anc 836 . . . . 5 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → ∃𝑤(𝑠𝑤𝑤𝑊))
10741, 106exlimddv 1935 . . . 4 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃𝑤(𝑠𝑤𝑤𝑊))
108 nfcv 2891 . . . . 5 𝑤𝑠
109108, 98elunif 45004 . . . 4 (𝑠 𝑊 ↔ ∃𝑤(𝑠𝑤𝑤𝑊))
110107, 109sylibr 234 . . 3 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑠 𝑊)
111110ex 412 . 2 (𝜑 → (𝑠 ∈ (𝑇𝑈) → 𝑠 𝑊))
112111ssrdv 3941 1 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  wss 3903   cuni 4858   class class class wbr 5092  cmpt 5173  ran crn 5620  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  (,)cioo 13248  topGenctg 17341   Cn ccn 23109  Compccmp 23271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208
This theorem is referenced by:  stoweidlem50  46041
  Copyright terms: Public domain W3C validator