Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem46 Structured version   Visualization version   GIF version

Theorem stoweidlem46 42193
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem46.1 𝑡𝑈
stoweidlem46.2 𝑄
stoweidlem46.3 𝑞𝜑
stoweidlem46.4 𝑡𝜑
stoweidlem46.5 𝐾 = (topGen‘ran (,))
stoweidlem46.6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem46.7 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem46.8 𝑇 = 𝐽
stoweidlem46.9 (𝜑𝐽 ∈ Comp)
stoweidlem46.10 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem46.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem46.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem46.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem46.14 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem46.15 (𝜑𝑈𝐽)
stoweidlem46.16 (𝜑𝑍𝑈)
stoweidlem46.17 (𝜑𝑇 ∈ V)
Assertion
Ref Expression
stoweidlem46 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝑇   𝑓,𝑞,𝑔,𝑡,𝑇   𝑓,𝑟,𝑞,𝑡,𝑇   𝑥,𝑓,𝑞,𝑡,𝑇   𝐴,𝑓,𝑔,,𝑡   𝑄,𝑓,𝑔   𝑈,𝑓,𝑔,𝑞   𝑓,𝑍,𝑔,,𝑡   𝜑,𝑓,𝑔   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   𝐴,𝑞,𝑟   𝑍,𝑞,𝑥   𝑈,𝑟   𝜑,𝑟   𝑡,𝐽,𝑤   𝑡,𝐾   𝑤,𝑄   𝑥,𝐴   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑡,,𝑞)   𝐴(𝑤)   𝑄(𝑥,𝑡,,𝑟,𝑞)   𝑈(𝑤,𝑡,)   𝐽(𝑥,𝑓,𝑔,,𝑟,𝑞)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem46
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem46.3 . . . . . . . 8 𝑞𝜑
2 nfv 1908 . . . . . . . 8 𝑞 𝑠 ∈ (𝑇𝑈)
31, 2nfan 1893 . . . . . . 7 𝑞(𝜑𝑠 ∈ (𝑇𝑈))
4 stoweidlem46.4 . . . . . . . 8 𝑡𝜑
5 nfcv 2981 . . . . . . . . . 10 𝑡𝑇
6 stoweidlem46.1 . . . . . . . . . 10 𝑡𝑈
75, 6nfdif 4105 . . . . . . . . 9 𝑡(𝑇𝑈)
87nfel2 3000 . . . . . . . 8 𝑡 𝑠 ∈ (𝑇𝑈)
94, 8nfan 1893 . . . . . . 7 𝑡(𝜑𝑠 ∈ (𝑇𝑈))
10 stoweidlem46.2 . . . . . . 7 𝑄
11 stoweidlem46.5 . . . . . . 7 𝐾 = (topGen‘ran (,))
12 stoweidlem46.6 . . . . . . 7 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
13 stoweidlem46.8 . . . . . . 7 𝑇 = 𝐽
14 stoweidlem46.9 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
1514adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝐽 ∈ Comp)
16 stoweidlem46.10 . . . . . . . 8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
1716adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝐴 ⊆ (𝐽 Cn 𝐾))
18 stoweidlem46.11 . . . . . . . 8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
19183adant1r 1171 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
20 stoweidlem46.12 . . . . . . . 8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
21203adant1r 1171 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
22 stoweidlem46.13 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
2322adantlr 711 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
24 stoweidlem46.14 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
2524adantlr 711 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
26 stoweidlem46.15 . . . . . . . 8 (𝜑𝑈𝐽)
2726adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑈𝐽)
28 stoweidlem46.16 . . . . . . . 8 (𝜑𝑍𝑈)
2928adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑍𝑈)
30 simpr 485 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑠 ∈ (𝑇𝑈))
313, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30stoweidlem43 42190 . . . . . 6 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃(𝑄 ∧ 0 < (𝑠)))
32 nfv 1908 . . . . . . 7 𝑔(𝑄 ∧ 0 < (𝑠))
3310nfel2 3000 . . . . . . . 8 𝑔𝑄
34 nfv 1908 . . . . . . . 8 0 < (𝑔𝑠)
3533, 34nfan 1893 . . . . . . 7 (𝑔𝑄 ∧ 0 < (𝑔𝑠))
36 eleq1 2904 . . . . . . . 8 ( = 𝑔 → (𝑄𝑔𝑄))
37 fveq1 6665 . . . . . . . . 9 ( = 𝑔 → (𝑠) = (𝑔𝑠))
3837breq2d 5074 . . . . . . . 8 ( = 𝑔 → (0 < (𝑠) ↔ 0 < (𝑔𝑠)))
3936, 38anbi12d 630 . . . . . . 7 ( = 𝑔 → ((𝑄 ∧ 0 < (𝑠)) ↔ (𝑔𝑄 ∧ 0 < (𝑔𝑠))))
4032, 35, 39cbvexv1 2356 . . . . . 6 (∃(𝑄 ∧ 0 < (𝑠)) ↔ ∃𝑔(𝑔𝑄 ∧ 0 < (𝑔𝑠)))
4131, 40sylib 219 . . . . 5 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃𝑔(𝑔𝑄 ∧ 0 < (𝑔𝑠)))
42 stoweidlem46.17 . . . . . . . 8 (𝜑𝑇 ∈ V)
43 rabexg 5230 . . . . . . . 8 (𝑇 ∈ V → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
4442, 43syl 17 . . . . . . 7 (𝜑 → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
4544ad2antrr 722 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
46 eldifi 4106 . . . . . . . 8 (𝑠 ∈ (𝑇𝑈) → 𝑠𝑇)
4746ad2antlr 723 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑠𝑇)
48 simprr 769 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 0 < (𝑔𝑠))
49 fveq2 6666 . . . . . . . . 9 (𝑡 = 𝑠 → (𝑔𝑡) = (𝑔𝑠))
5049breq2d 5074 . . . . . . . 8 (𝑡 = 𝑠 → (0 < (𝑔𝑡) ↔ 0 < (𝑔𝑠)))
5150elrab 3683 . . . . . . 7 (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ↔ (𝑠𝑇 ∧ 0 < (𝑔𝑠)))
5247, 48, 51sylanbrc 583 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
53 simpll 763 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝜑)
5416adantr 481 . . . . . . . . . . 11 ((𝜑𝑔𝑄) → 𝐴 ⊆ (𝐽 Cn 𝐾))
55 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑔𝑄) → 𝑔𝑄)
5655, 12syl6eleq 2927 . . . . . . . . . . . . 13 ((𝜑𝑔𝑄) → 𝑔 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
57 fveq1 6665 . . . . . . . . . . . . . . . 16 ( = 𝑔 → (𝑍) = (𝑔𝑍))
5857eqeq1d 2827 . . . . . . . . . . . . . . 15 ( = 𝑔 → ((𝑍) = 0 ↔ (𝑔𝑍) = 0))
59 fveq1 6665 . . . . . . . . . . . . . . . . . 18 ( = 𝑔 → (𝑡) = (𝑔𝑡))
6059breq2d 5074 . . . . . . . . . . . . . . . . 17 ( = 𝑔 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑔𝑡)))
6159breq1d 5072 . . . . . . . . . . . . . . . . 17 ( = 𝑔 → ((𝑡) ≤ 1 ↔ (𝑔𝑡) ≤ 1))
6260, 61anbi12d 630 . . . . . . . . . . . . . . . 16 ( = 𝑔 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
6362ralbidv 3201 . . . . . . . . . . . . . . 15 ( = 𝑔 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
6458, 63anbi12d 630 . . . . . . . . . . . . . 14 ( = 𝑔 → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6564elrab 3683 . . . . . . . . . . . . 13 (𝑔 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ (𝑔𝐴 ∧ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6656, 65sylib 219 . . . . . . . . . . . 12 ((𝜑𝑔𝑄) → (𝑔𝐴 ∧ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6766simpld 495 . . . . . . . . . . 11 ((𝜑𝑔𝑄) → 𝑔𝐴)
6854, 67sseldd 3971 . . . . . . . . . 10 ((𝜑𝑔𝑄) → 𝑔 ∈ (𝐽 Cn 𝐾))
6968ad2ant2r 743 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑔 ∈ (𝐽 Cn 𝐾))
70 nfcv 2981 . . . . . . . . . 10 𝑡0
71 nfcv 2981 . . . . . . . . . 10 𝑡𝑔
72 nfv 1908 . . . . . . . . . . 11 𝑡 𝑔 ∈ (𝐽 Cn 𝐾)
734, 72nfan 1893 . . . . . . . . . 10 𝑡(𝜑𝑔 ∈ (𝐽 Cn 𝐾))
74 eqid 2825 . . . . . . . . . 10 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
75 0xr 10680 . . . . . . . . . . 11 0 ∈ ℝ*
7675a1i 11 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → 0 ∈ ℝ*)
77 simpr 485 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → 𝑔 ∈ (𝐽 Cn 𝐾))
7870, 71, 73, 11, 13, 74, 76, 77rfcnpre1 41137 . . . . . . . . 9 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽)
7953, 69, 78syl2anc 584 . . . . . . . 8 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽)
80 eqidd 2826 . . . . . . . . . 10 ((𝜑𝑔𝑄) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
81 nfv 1908 . . . . . . . . . . 11 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
82 nfcv 2981 . . . . . . . . . . 11 𝑔
8359breq2d 5074 . . . . . . . . . . . . 13 ( = 𝑔 → (0 < (𝑡) ↔ 0 < (𝑔𝑡)))
8483rabbidv 3485 . . . . . . . . . . . 12 ( = 𝑔 → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
8584eqeq2d 2836 . . . . . . . . . . 11 ( = 𝑔 → ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}))
8681, 82, 10, 85rspcegf 41141 . . . . . . . . . 10 ((𝑔𝑄 ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
8755, 80, 86syl2anc 584 . . . . . . . . 9 ((𝜑𝑔𝑄) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
8887ad2ant2r 743 . . . . . . . 8 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
89 eqeq1 2829 . . . . . . . . . 10 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9089rexbidv 3301 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9190elrab 3683 . . . . . . . 8 ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽 ∧ ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9279, 88, 91sylanbrc 583 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
93 stoweidlem46.7 . . . . . . 7 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9492, 93syl6eleqr 2928 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)
95 nfcv 2981 . . . . . . . 8 𝑤{𝑡𝑇 ∣ 0 < (𝑔𝑡)}
96 nfv 1908 . . . . . . . . 9 𝑤 𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
97 nfrab1 3389 . . . . . . . . . . 11 𝑤{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9893, 97nfcxfr 2979 . . . . . . . . . 10 𝑤𝑊
9998nfel2 3000 . . . . . . . . 9 𝑤{𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊
10096, 99nfan 1893 . . . . . . . 8 𝑤(𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)
101 eleq2 2905 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑠𝑤𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)}))
102 eleq1 2904 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑤𝑊 ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊))
103101, 102anbi12d 630 . . . . . . . 8 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → ((𝑠𝑤𝑤𝑊) ↔ (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)))
10495, 100, 103spcegf 3595 . . . . . . 7 ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V → ((𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊) → ∃𝑤(𝑠𝑤𝑤𝑊)))
105104imp 407 . . . . . 6 (({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V ∧ (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)) → ∃𝑤(𝑠𝑤𝑤𝑊))
10645, 52, 94, 105syl12anc 834 . . . . 5 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → ∃𝑤(𝑠𝑤𝑤𝑊))
10741, 106exlimddv 1929 . . . 4 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃𝑤(𝑠𝑤𝑤𝑊))
108 nfcv 2981 . . . . 5 𝑤𝑠
109108, 98elunif 41134 . . . 4 (𝑠 𝑊 ↔ ∃𝑤(𝑠𝑤𝑤𝑊))
110107, 109sylibr 235 . . 3 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑠 𝑊)
111110ex 413 . 2 (𝜑 → (𝑠 ∈ (𝑇𝑈) → 𝑠 𝑊))
112111ssrdv 3976 1 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wex 1773  wnf 1777  wcel 2107  wnfc 2965  wne 3020  wral 3142  wrex 3143  {crab 3146  Vcvv 3499  cdif 3936  wss 3939   cuni 4836   class class class wbr 5062  cmpt 5142  ran crn 5554  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  *cxr 10666   < clt 10667  cle 10668  (,)cioo 12731  topGenctg 16703   Cn ccn 21748  Compccmp 21910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-icc 12738  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cn 21751  df-cnp 21752  df-cmp 21911  df-tx 22086  df-hmeo 22279  df-xms 22845  df-ms 22846  df-tms 22847
This theorem is referenced by:  stoweidlem50  42197
  Copyright terms: Public domain W3C validator