Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inaex | Structured version Visualization version GIF version |
Description: Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
inaex | ⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inawina 10377 | . . . . . . 7 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw) | |
2 | winaon 10375 | . . . . . . 7 ⊢ (𝑥 ∈ Inaccw → 𝑥 ∈ On) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ On) |
4 | 3 | ssriv 3921 | . . . . 5 ⊢ Inacc ⊆ On |
5 | onmindif 6340 | . . . . 5 ⊢ ((Inacc ⊆ On ∧ 𝐴 ∈ On) → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) | |
6 | 4, 5 | mpan 686 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) |
8 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝑥 = ∩ (Inacc ∖ suc 𝐴)) | |
9 | 7, 8 | eleqtrrd 2842 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝐴 ∈ 𝑥) |
10 | difss 4062 | . . . . 5 ⊢ (Inacc ∖ suc 𝐴) ⊆ Inacc | |
11 | 10, 4 | sstri 3926 | . . . 4 ⊢ (Inacc ∖ suc 𝐴) ⊆ On |
12 | inaprc 10523 | . . . . . . 7 ⊢ Inacc ∉ V | |
13 | 12 | neli 3050 | . . . . . 6 ⊢ ¬ Inacc ∈ V |
14 | ssdif0 4294 | . . . . . . 7 ⊢ (Inacc ⊆ suc 𝐴 ↔ (Inacc ∖ suc 𝐴) = ∅) | |
15 | sucexg 7632 | . . . . . . . 8 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
16 | ssexg 5242 | . . . . . . . . 9 ⊢ ((Inacc ⊆ suc 𝐴 ∧ suc 𝐴 ∈ V) → Inacc ∈ V) | |
17 | 16 | expcom 413 | . . . . . . . 8 ⊢ (suc 𝐴 ∈ V → (Inacc ⊆ suc 𝐴 → Inacc ∈ V)) |
18 | 15, 17 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ On → (Inacc ⊆ suc 𝐴 → Inacc ∈ V)) |
19 | 14, 18 | syl5bir 242 | . . . . . 6 ⊢ (𝐴 ∈ On → ((Inacc ∖ suc 𝐴) = ∅ → Inacc ∈ V)) |
20 | 13, 19 | mtoi 198 | . . . . 5 ⊢ (𝐴 ∈ On → ¬ (Inacc ∖ suc 𝐴) = ∅) |
21 | 20 | neqned 2949 | . . . 4 ⊢ (𝐴 ∈ On → (Inacc ∖ suc 𝐴) ≠ ∅) |
22 | onint 7617 | . . . 4 ⊢ (((Inacc ∖ suc 𝐴) ⊆ On ∧ (Inacc ∖ suc 𝐴) ≠ ∅) → ∩ (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴)) | |
23 | 11, 21, 22 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ On → ∩ (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴)) |
24 | 23 | eldifad 3895 | . 2 ⊢ (𝐴 ∈ On → ∩ (Inacc ∖ suc 𝐴) ∈ Inacc) |
25 | 9, 24 | rspcime 3556 | 1 ⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 ∩ cint 4876 Oncon0 6251 suc csuc 6253 Inaccwcwina 10369 Inacccina 10370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 ax-groth 10510 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-smo 8148 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-har 9246 df-r1 9453 df-card 9628 df-aleph 9629 df-cf 9630 df-acn 9631 df-ac 9803 df-wina 10371 df-ina 10372 df-tsk 10436 |
This theorem is referenced by: gruex 41805 |
Copyright terms: Public domain | W3C validator |