Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inaex Structured version   Visualization version   GIF version

Theorem inaex 44316
Description: Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
inaex (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem inaex
StepHypRef Expression
1 inawina 10730 . . . . . . 7 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
2 winaon 10728 . . . . . . 7 (𝑥 ∈ Inaccw𝑥 ∈ On)
31, 2syl 17 . . . . . 6 (𝑥 ∈ Inacc → 𝑥 ∈ On)
43ssriv 3987 . . . . 5 Inacc ⊆ On
5 onmindif 6476 . . . . 5 ((Inacc ⊆ On ∧ 𝐴 ∈ On) → 𝐴 (Inacc ∖ suc 𝐴))
64, 5mpan 690 . . . 4 (𝐴 ∈ On → 𝐴 (Inacc ∖ suc 𝐴))
76adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝑥 = (Inacc ∖ suc 𝐴)) → 𝐴 (Inacc ∖ suc 𝐴))
8 simpr 484 . . 3 ((𝐴 ∈ On ∧ 𝑥 = (Inacc ∖ suc 𝐴)) → 𝑥 = (Inacc ∖ suc 𝐴))
97, 8eleqtrrd 2844 . 2 ((𝐴 ∈ On ∧ 𝑥 = (Inacc ∖ suc 𝐴)) → 𝐴𝑥)
10 difss 4136 . . . . 5 (Inacc ∖ suc 𝐴) ⊆ Inacc
1110, 4sstri 3993 . . . 4 (Inacc ∖ suc 𝐴) ⊆ On
12 inaprc 10876 . . . . . . 7 Inacc ∉ V
1312neli 3048 . . . . . 6 ¬ Inacc ∈ V
14 ssdif0 4366 . . . . . . 7 (Inacc ⊆ suc 𝐴 ↔ (Inacc ∖ suc 𝐴) = ∅)
15 sucexg 7825 . . . . . . . 8 (𝐴 ∈ On → suc 𝐴 ∈ V)
16 ssexg 5323 . . . . . . . . 9 ((Inacc ⊆ suc 𝐴 ∧ suc 𝐴 ∈ V) → Inacc ∈ V)
1716expcom 413 . . . . . . . 8 (suc 𝐴 ∈ V → (Inacc ⊆ suc 𝐴 → Inacc ∈ V))
1815, 17syl 17 . . . . . . 7 (𝐴 ∈ On → (Inacc ⊆ suc 𝐴 → Inacc ∈ V))
1914, 18biimtrrid 243 . . . . . 6 (𝐴 ∈ On → ((Inacc ∖ suc 𝐴) = ∅ → Inacc ∈ V))
2013, 19mtoi 199 . . . . 5 (𝐴 ∈ On → ¬ (Inacc ∖ suc 𝐴) = ∅)
2120neqned 2947 . . . 4 (𝐴 ∈ On → (Inacc ∖ suc 𝐴) ≠ ∅)
22 onint 7810 . . . 4 (((Inacc ∖ suc 𝐴) ⊆ On ∧ (Inacc ∖ suc 𝐴) ≠ ∅) → (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴))
2311, 21, 22sylancr 587 . . 3 (𝐴 ∈ On → (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴))
2423eldifad 3963 . 2 (𝐴 ∈ On → (Inacc ∖ suc 𝐴) ∈ Inacc)
259, 24rspcime 3627 1 (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  cdif 3948  wss 3951  c0 4333   cint 4946  Oncon0 6384  suc csuc 6386  Inaccwcwina 10722  Inacccina 10723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-ac2 10503  ax-groth 10863
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-smo 8386  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-har 9597  df-r1 9804  df-card 9979  df-aleph 9980  df-cf 9981  df-acn 9982  df-ac 10156  df-wina 10724  df-ina 10725  df-tsk 10789
This theorem is referenced by:  gruex  44317
  Copyright terms: Public domain W3C validator