| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inaex | Structured version Visualization version GIF version | ||
| Description: Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| inaex | ⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inawina 10619 | . . . . . . 7 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw) | |
| 2 | winaon 10617 | . . . . . . 7 ⊢ (𝑥 ∈ Inaccw → 𝑥 ∈ On) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ On) |
| 4 | 3 | ssriv 3947 | . . . . 5 ⊢ Inacc ⊆ On |
| 5 | onmindif 6414 | . . . . 5 ⊢ ((Inacc ⊆ On ∧ 𝐴 ∈ On) → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) |
| 8 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝑥 = ∩ (Inacc ∖ suc 𝐴)) | |
| 9 | 7, 8 | eleqtrrd 2831 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝐴 ∈ 𝑥) |
| 10 | difss 4095 | . . . . 5 ⊢ (Inacc ∖ suc 𝐴) ⊆ Inacc | |
| 11 | 10, 4 | sstri 3953 | . . . 4 ⊢ (Inacc ∖ suc 𝐴) ⊆ On |
| 12 | inaprc 10765 | . . . . . . 7 ⊢ Inacc ∉ V | |
| 13 | 12 | neli 3031 | . . . . . 6 ⊢ ¬ Inacc ∈ V |
| 14 | ssdif0 4325 | . . . . . . 7 ⊢ (Inacc ⊆ suc 𝐴 ↔ (Inacc ∖ suc 𝐴) = ∅) | |
| 15 | sucexg 7761 | . . . . . . . 8 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 16 | ssexg 5273 | . . . . . . . . 9 ⊢ ((Inacc ⊆ suc 𝐴 ∧ suc 𝐴 ∈ V) → Inacc ∈ V) | |
| 17 | 16 | expcom 413 | . . . . . . . 8 ⊢ (suc 𝐴 ∈ V → (Inacc ⊆ suc 𝐴 → Inacc ∈ V)) |
| 18 | 15, 17 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ On → (Inacc ⊆ suc 𝐴 → Inacc ∈ V)) |
| 19 | 14, 18 | biimtrrid 243 | . . . . . 6 ⊢ (𝐴 ∈ On → ((Inacc ∖ suc 𝐴) = ∅ → Inacc ∈ V)) |
| 20 | 13, 19 | mtoi 199 | . . . . 5 ⊢ (𝐴 ∈ On → ¬ (Inacc ∖ suc 𝐴) = ∅) |
| 21 | 20 | neqned 2932 | . . . 4 ⊢ (𝐴 ∈ On → (Inacc ∖ suc 𝐴) ≠ ∅) |
| 22 | onint 7746 | . . . 4 ⊢ (((Inacc ∖ suc 𝐴) ⊆ On ∧ (Inacc ∖ suc 𝐴) ≠ ∅) → ∩ (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴)) | |
| 23 | 11, 21, 22 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ On → ∩ (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴)) |
| 24 | 23 | eldifad 3923 | . 2 ⊢ (𝐴 ∈ On → ∩ (Inacc ∖ suc 𝐴) ∈ Inacc) |
| 25 | 9, 24 | rspcime 3590 | 1 ⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 ∅c0 4292 ∩ cint 4906 Oncon0 6320 suc csuc 6322 Inaccwcwina 10611 Inacccina 10612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 ax-groth 10752 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-smo 8292 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-har 9486 df-r1 9693 df-card 9868 df-aleph 9869 df-cf 9870 df-acn 9871 df-ac 10045 df-wina 10613 df-ina 10614 df-tsk 10678 |
| This theorem is referenced by: gruex 44260 |
| Copyright terms: Public domain | W3C validator |