| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inaex | Structured version Visualization version GIF version | ||
| Description: Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| inaex | ⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inawina 10702 | . . . . . . 7 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw) | |
| 2 | winaon 10700 | . . . . . . 7 ⊢ (𝑥 ∈ Inaccw → 𝑥 ∈ On) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ On) |
| 4 | 3 | ssriv 3962 | . . . . 5 ⊢ Inacc ⊆ On |
| 5 | onmindif 6445 | . . . . 5 ⊢ ((Inacc ⊆ On ∧ 𝐴 ∈ On) → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) |
| 8 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝑥 = ∩ (Inacc ∖ suc 𝐴)) | |
| 9 | 7, 8 | eleqtrrd 2837 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝐴 ∈ 𝑥) |
| 10 | difss 4111 | . . . . 5 ⊢ (Inacc ∖ suc 𝐴) ⊆ Inacc | |
| 11 | 10, 4 | sstri 3968 | . . . 4 ⊢ (Inacc ∖ suc 𝐴) ⊆ On |
| 12 | inaprc 10848 | . . . . . . 7 ⊢ Inacc ∉ V | |
| 13 | 12 | neli 3038 | . . . . . 6 ⊢ ¬ Inacc ∈ V |
| 14 | ssdif0 4341 | . . . . . . 7 ⊢ (Inacc ⊆ suc 𝐴 ↔ (Inacc ∖ suc 𝐴) = ∅) | |
| 15 | sucexg 7797 | . . . . . . . 8 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 16 | ssexg 5293 | . . . . . . . . 9 ⊢ ((Inacc ⊆ suc 𝐴 ∧ suc 𝐴 ∈ V) → Inacc ∈ V) | |
| 17 | 16 | expcom 413 | . . . . . . . 8 ⊢ (suc 𝐴 ∈ V → (Inacc ⊆ suc 𝐴 → Inacc ∈ V)) |
| 18 | 15, 17 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ On → (Inacc ⊆ suc 𝐴 → Inacc ∈ V)) |
| 19 | 14, 18 | biimtrrid 243 | . . . . . 6 ⊢ (𝐴 ∈ On → ((Inacc ∖ suc 𝐴) = ∅ → Inacc ∈ V)) |
| 20 | 13, 19 | mtoi 199 | . . . . 5 ⊢ (𝐴 ∈ On → ¬ (Inacc ∖ suc 𝐴) = ∅) |
| 21 | 20 | neqned 2939 | . . . 4 ⊢ (𝐴 ∈ On → (Inacc ∖ suc 𝐴) ≠ ∅) |
| 22 | onint 7782 | . . . 4 ⊢ (((Inacc ∖ suc 𝐴) ⊆ On ∧ (Inacc ∖ suc 𝐴) ≠ ∅) → ∩ (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴)) | |
| 23 | 11, 21, 22 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ On → ∩ (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴)) |
| 24 | 23 | eldifad 3938 | . 2 ⊢ (𝐴 ∈ On → ∩ (Inacc ∖ suc 𝐴) ∈ Inacc) |
| 25 | 9, 24 | rspcime 3606 | 1 ⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 ∩ cint 4922 Oncon0 6352 suc csuc 6354 Inaccwcwina 10694 Inacccina 10695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-ac2 10475 ax-groth 10835 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-smo 8358 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-oi 9522 df-har 9569 df-r1 9776 df-card 9951 df-aleph 9952 df-cf 9953 df-acn 9954 df-ac 10128 df-wina 10696 df-ina 10697 df-tsk 10761 |
| This theorem is referenced by: gruex 44270 |
| Copyright terms: Public domain | W3C validator |