| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inaex | Structured version Visualization version GIF version | ||
| Description: Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| inaex | ⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inawina 10643 | . . . . . . 7 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw) | |
| 2 | winaon 10641 | . . . . . . 7 ⊢ (𝑥 ∈ Inaccw → 𝑥 ∈ On) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ On) |
| 4 | 3 | ssriv 3950 | . . . . 5 ⊢ Inacc ⊆ On |
| 5 | onmindif 6426 | . . . . 5 ⊢ ((Inacc ⊆ On ∧ 𝐴 ∈ On) → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝐴 ∈ ∩ (Inacc ∖ suc 𝐴)) |
| 8 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝑥 = ∩ (Inacc ∖ suc 𝐴)) | |
| 9 | 7, 8 | eleqtrrd 2831 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑥 = ∩ (Inacc ∖ suc 𝐴)) → 𝐴 ∈ 𝑥) |
| 10 | difss 4099 | . . . . 5 ⊢ (Inacc ∖ suc 𝐴) ⊆ Inacc | |
| 11 | 10, 4 | sstri 3956 | . . . 4 ⊢ (Inacc ∖ suc 𝐴) ⊆ On |
| 12 | inaprc 10789 | . . . . . . 7 ⊢ Inacc ∉ V | |
| 13 | 12 | neli 3031 | . . . . . 6 ⊢ ¬ Inacc ∈ V |
| 14 | ssdif0 4329 | . . . . . . 7 ⊢ (Inacc ⊆ suc 𝐴 ↔ (Inacc ∖ suc 𝐴) = ∅) | |
| 15 | sucexg 7781 | . . . . . . . 8 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 16 | ssexg 5278 | . . . . . . . . 9 ⊢ ((Inacc ⊆ suc 𝐴 ∧ suc 𝐴 ∈ V) → Inacc ∈ V) | |
| 17 | 16 | expcom 413 | . . . . . . . 8 ⊢ (suc 𝐴 ∈ V → (Inacc ⊆ suc 𝐴 → Inacc ∈ V)) |
| 18 | 15, 17 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ On → (Inacc ⊆ suc 𝐴 → Inacc ∈ V)) |
| 19 | 14, 18 | biimtrrid 243 | . . . . . 6 ⊢ (𝐴 ∈ On → ((Inacc ∖ suc 𝐴) = ∅ → Inacc ∈ V)) |
| 20 | 13, 19 | mtoi 199 | . . . . 5 ⊢ (𝐴 ∈ On → ¬ (Inacc ∖ suc 𝐴) = ∅) |
| 21 | 20 | neqned 2932 | . . . 4 ⊢ (𝐴 ∈ On → (Inacc ∖ suc 𝐴) ≠ ∅) |
| 22 | onint 7766 | . . . 4 ⊢ (((Inacc ∖ suc 𝐴) ⊆ On ∧ (Inacc ∖ suc 𝐴) ≠ ∅) → ∩ (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴)) | |
| 23 | 11, 21, 22 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ On → ∩ (Inacc ∖ suc 𝐴) ∈ (Inacc ∖ suc 𝐴)) |
| 24 | 23 | eldifad 3926 | . 2 ⊢ (𝐴 ∈ On → ∩ (Inacc ∖ suc 𝐴) ∈ Inacc) |
| 25 | 9, 24 | rspcime 3593 | 1 ⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 ∩ cint 4910 Oncon0 6332 suc csuc 6334 Inaccwcwina 10635 Inacccina 10636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 ax-groth 10776 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-smo 8315 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-har 9510 df-r1 9717 df-card 9892 df-aleph 9893 df-cf 9894 df-acn 9895 df-ac 10069 df-wina 10637 df-ina 10638 df-tsk 10702 |
| This theorem is referenced by: gruex 44287 |
| Copyright terms: Public domain | W3C validator |