| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmptdv | Structured version Visualization version GIF version | ||
| Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| elrnmptdv.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmptdv.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| elrnmptdv.3 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| elrnmptdv.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| elrnmptdv | ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmptdv.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) | |
| 2 | elrnmptdv.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | 1, 2 | rspcime 3580 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐷 = 𝐵) |
| 4 | elrnmptdv.3 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 5 | elrnmptdv.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | elrnmpt 5895 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐷 = 𝐵)) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐷 = 𝐵)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 ↦ cmpt 5170 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-mpt 5171 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: cycsubggend 19110 nsgqusf1olem3 33370 zart0 33882 rr-elrnmpt3d 44220 |
| Copyright terms: Public domain | W3C validator |