MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptdv Structured version   Visualization version   GIF version

Theorem elrnmptdv 5860
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmptdv.1 𝐹 = (𝑥𝐴𝐵)
elrnmptdv.2 (𝜑𝐶𝐴)
elrnmptdv.3 (𝜑𝐷𝑉)
elrnmptdv.4 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
Assertion
Ref Expression
elrnmptdv (𝜑𝐷 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptdv
StepHypRef Expression
1 elrnmptdv.4 . . 3 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
2 elrnmptdv.2 . . 3 (𝜑𝐶𝐴)
31, 2rspcime 3556 . 2 (𝜑 → ∃𝑥𝐴 𝐷 = 𝐵)
4 elrnmptdv.3 . . 3 (𝜑𝐷𝑉)
5 elrnmptdv.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
65elrnmpt 5854 . . 3 (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐷 = 𝐵))
74, 6syl 17 . 2 (𝜑 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐷 = 𝐵))
83, 7mpbird 256 1 (𝜑𝐷 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  cmpt 5153  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by:  cycsubggend  18739  nsgqusf1olem3  31502  zart0  31731  rr-elrnmpt3d  41708
  Copyright terms: Public domain W3C validator