MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptdv Structured version   Visualization version   GIF version

Theorem elrnmptdv 5950
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmptdv.1 𝐹 = (𝑥𝐴𝐵)
elrnmptdv.2 (𝜑𝐶𝐴)
elrnmptdv.3 (𝜑𝐷𝑉)
elrnmptdv.4 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
Assertion
Ref Expression
elrnmptdv (𝜑𝐷 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptdv
StepHypRef Expression
1 elrnmptdv.4 . . 3 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
2 elrnmptdv.2 . . 3 (𝜑𝐶𝐴)
31, 2rspcime 3611 . 2 (𝜑 → ∃𝑥𝐴 𝐷 = 𝐵)
4 elrnmptdv.3 . . 3 (𝜑𝐷𝑉)
5 elrnmptdv.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
65elrnmpt 5943 . . 3 (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐷 = 𝐵))
74, 6syl 17 . 2 (𝜑 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐷 = 𝐵))
83, 7mpbird 257 1 (𝜑𝐷 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  cmpt 5206  ran crn 5660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-mpt 5207  df-cnv 5667  df-dm 5669  df-rn 5670
This theorem is referenced by:  cycsubggend  19193  nsgqusf1olem3  33435  zart0  33915  rr-elrnmpt3d  44199
  Copyright terms: Public domain W3C validator