MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptdv Structured version   Visualization version   GIF version

Theorem elrnmptdv 5932
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmptdv.1 𝐹 = (𝑥𝐴𝐵)
elrnmptdv.2 (𝜑𝐶𝐴)
elrnmptdv.3 (𝜑𝐷𝑉)
elrnmptdv.4 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
Assertion
Ref Expression
elrnmptdv (𝜑𝐷 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptdv
StepHypRef Expression
1 elrnmptdv.4 . . 3 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
2 elrnmptdv.2 . . 3 (𝜑𝐶𝐴)
31, 2rspcime 3596 . 2 (𝜑 → ∃𝑥𝐴 𝐷 = 𝐵)
4 elrnmptdv.3 . . 3 (𝜑𝐷𝑉)
5 elrnmptdv.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
65elrnmpt 5925 . . 3 (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐷 = 𝐵))
74, 6syl 17 . 2 (𝜑 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐷 = 𝐵))
83, 7mpbird 257 1 (𝜑𝐷 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  cmpt 5191  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  cycsubggend  19144  nsgqusf1olem3  33393  zart0  33876  rr-elrnmpt3d  44204
  Copyright terms: Public domain W3C validator