| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmptdv | Structured version Visualization version GIF version | ||
| Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| elrnmptdv.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmptdv.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| elrnmptdv.3 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| elrnmptdv.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| elrnmptdv | ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmptdv.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) | |
| 2 | elrnmptdv.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | 1, 2 | rspcime 3610 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐷 = 𝐵) |
| 4 | elrnmptdv.3 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 5 | elrnmptdv.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | elrnmpt 5949 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐷 = 𝐵)) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐷 = 𝐵)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ↦ cmpt 5205 ran crn 5666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-cnv 5673 df-dm 5675 df-rn 5676 |
| This theorem is referenced by: cycsubggend 19192 nsgqusf1olem3 33378 zart0 33837 rr-elrnmpt3d 44183 |
| Copyright terms: Public domain | W3C validator |