Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrnmptdv | Structured version Visualization version GIF version |
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
elrnmptdv.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmptdv.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
elrnmptdv.3 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
elrnmptdv.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
elrnmptdv | ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmptdv.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) | |
2 | elrnmptdv.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | 1, 2 | rspcime 3556 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐷 = 𝐵) |
4 | elrnmptdv.3 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
5 | elrnmptdv.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | elrnmpt 5854 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐷 = 𝐵)) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐷 = 𝐵)) |
8 | 3, 7 | mpbird 256 | 1 ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ↦ cmpt 5153 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: cycsubggend 18739 nsgqusf1olem3 31502 zart0 31731 rr-elrnmpt3d 41708 |
Copyright terms: Public domain | W3C validator |