MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptdv Structured version   Visualization version   GIF version

Theorem elrnmptdv 5912
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmptdv.1 𝐹 = (𝑥𝐴𝐵)
elrnmptdv.2 (𝜑𝐶𝐴)
elrnmptdv.3 (𝜑𝐷𝑉)
elrnmptdv.4 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
Assertion
Ref Expression
elrnmptdv (𝜑𝐷 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptdv
StepHypRef Expression
1 elrnmptdv.4 . . 3 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
2 elrnmptdv.2 . . 3 (𝜑𝐶𝐴)
31, 2rspcime 3579 . 2 (𝜑 → ∃𝑥𝐴 𝐷 = 𝐵)
4 elrnmptdv.3 . . 3 (𝜑𝐷𝑉)
5 elrnmptdv.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
65elrnmpt 5905 . . 3 (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐷 = 𝐵))
74, 6syl 17 . 2 (𝜑 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐷 = 𝐵))
83, 7mpbird 257 1 (𝜑𝐷 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3058  cmpt 5176  ran crn 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-mpt 5177  df-cnv 5629  df-dm 5631  df-rn 5632
This theorem is referenced by:  cycsubggend  19127  nsgqusf1olem3  33391  zart0  33903  rr-elrnmpt3d  44315
  Copyright terms: Public domain W3C validator