| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mnuprdlem3.9 | . 2
⊢
Ⅎ𝑖𝜑 | 
| 2 |  | elpri 4648 | . . . . 5
⊢ (𝑖 ∈ {∅, {∅}}
→ (𝑖 = ∅ ∨
𝑖 =
{∅})) | 
| 3 |  | 0ex 5306 | . . . . . . . . . 10
⊢ ∅
∈ V | 
| 4 | 3 | prid1 4761 | . . . . . . . . 9
⊢ ∅
∈ {∅, {𝐴}} | 
| 5 | 4 | a1i 11 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = ∅) ∧ 𝑎 = {∅, {𝐴}}) → ∅ ∈ {∅, {𝐴}}) | 
| 6 |  | simplr 768 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = ∅) ∧ 𝑎 = {∅, {𝐴}}) → 𝑖 = ∅) | 
| 7 |  | simpr 484 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = ∅) ∧ 𝑎 = {∅, {𝐴}}) → 𝑎 = {∅, {𝐴}}) | 
| 8 | 5, 6, 7 | 3eltr4d 2855 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 = ∅) ∧ 𝑎 = {∅, {𝐴}}) → 𝑖 ∈ 𝑎) | 
| 9 |  | prex 5436 | . . . . . . . . . 10
⊢ {∅,
{𝐴}} ∈
V | 
| 10 | 9 | prid1 4761 | . . . . . . . . 9
⊢ {∅,
{𝐴}} ∈ {{∅,
{𝐴}}, {{∅}, {𝐵}}} | 
| 11 |  | mnuprdlem3.1 | . . . . . . . . 9
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} | 
| 12 | 10, 11 | eleqtrri 2839 | . . . . . . . 8
⊢ {∅,
{𝐴}} ∈ 𝐹 | 
| 13 | 12 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = ∅) → {∅, {𝐴}} ∈ 𝐹) | 
| 14 | 8, 13 | rspcime 3626 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 = ∅) → ∃𝑎 ∈ 𝐹 𝑖 ∈ 𝑎) | 
| 15 |  | p0ex 5383 | . . . . . . . . . 10
⊢ {∅}
∈ V | 
| 16 | 15 | prid1 4761 | . . . . . . . . 9
⊢ {∅}
∈ {{∅}, {𝐵}} | 
| 17 | 16 | a1i 11 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = {∅}) ∧ 𝑎 = {{∅}, {𝐵}}) → {∅} ∈ {{∅},
{𝐵}}) | 
| 18 |  | simplr 768 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = {∅}) ∧ 𝑎 = {{∅}, {𝐵}}) → 𝑖 = {∅}) | 
| 19 |  | simpr 484 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = {∅}) ∧ 𝑎 = {{∅}, {𝐵}}) → 𝑎 = {{∅}, {𝐵}}) | 
| 20 | 17, 18, 19 | 3eltr4d 2855 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 = {∅}) ∧ 𝑎 = {{∅}, {𝐵}}) → 𝑖 ∈ 𝑎) | 
| 21 |  | prex 5436 | . . . . . . . . . 10
⊢
{{∅}, {𝐵}}
∈ V | 
| 22 | 21 | prid2 4762 | . . . . . . . . 9
⊢
{{∅}, {𝐵}}
∈ {{∅, {𝐴}},
{{∅}, {𝐵}}} | 
| 23 | 22, 11 | eleqtrri 2839 | . . . . . . . 8
⊢
{{∅}, {𝐵}}
∈ 𝐹 | 
| 24 | 23 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = {∅}) → {{∅}, {𝐵}} ∈ 𝐹) | 
| 25 | 20, 24 | rspcime 3626 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 = {∅}) → ∃𝑎 ∈ 𝐹 𝑖 ∈ 𝑎) | 
| 26 | 14, 25 | jaodan 959 | . . . . 5
⊢ ((𝜑 ∧ (𝑖 = ∅ ∨ 𝑖 = {∅})) → ∃𝑎 ∈ 𝐹 𝑖 ∈ 𝑎) | 
| 27 | 2, 26 | sylan2 593 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ {∅, {∅}}) →
∃𝑎 ∈ 𝐹 𝑖 ∈ 𝑎) | 
| 28 |  | elequ2 2122 | . . . . 5
⊢ (𝑎 = 𝑣 → (𝑖 ∈ 𝑎 ↔ 𝑖 ∈ 𝑣)) | 
| 29 | 28 | cbvrexvw 3237 | . . . 4
⊢
(∃𝑎 ∈
𝐹 𝑖 ∈ 𝑎 ↔ ∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) | 
| 30 | 27, 29 | sylib 218 | . . 3
⊢ ((𝜑 ∧ 𝑖 ∈ {∅, {∅}}) →
∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) | 
| 31 | 30 | ex 412 | . 2
⊢ (𝜑 → (𝑖 ∈ {∅, {∅}} →
∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣)) | 
| 32 | 1, 31 | ralrimi 3256 | 1
⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) |