| Step | Hyp | Ref
| Expression |
| 1 | | mnuprdlem3.9 |
. 2
⊢
Ⅎ𝑖𝜑 |
| 2 | | elpri 4630 |
. . . . 5
⊢ (𝑖 ∈ {∅, {∅}}
→ (𝑖 = ∅ ∨
𝑖 =
{∅})) |
| 3 | | 0ex 5282 |
. . . . . . . . . 10
⊢ ∅
∈ V |
| 4 | 3 | prid1 4743 |
. . . . . . . . 9
⊢ ∅
∈ {∅, {𝐴}} |
| 5 | 4 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = ∅) ∧ 𝑎 = {∅, {𝐴}}) → ∅ ∈ {∅, {𝐴}}) |
| 6 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = ∅) ∧ 𝑎 = {∅, {𝐴}}) → 𝑖 = ∅) |
| 7 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = ∅) ∧ 𝑎 = {∅, {𝐴}}) → 𝑎 = {∅, {𝐴}}) |
| 8 | 5, 6, 7 | 3eltr4d 2850 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 = ∅) ∧ 𝑎 = {∅, {𝐴}}) → 𝑖 ∈ 𝑎) |
| 9 | | prex 5412 |
. . . . . . . . . 10
⊢ {∅,
{𝐴}} ∈
V |
| 10 | 9 | prid1 4743 |
. . . . . . . . 9
⊢ {∅,
{𝐴}} ∈ {{∅,
{𝐴}}, {{∅}, {𝐵}}} |
| 11 | | mnuprdlem3.1 |
. . . . . . . . 9
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} |
| 12 | 10, 11 | eleqtrri 2834 |
. . . . . . . 8
⊢ {∅,
{𝐴}} ∈ 𝐹 |
| 13 | 12 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = ∅) → {∅, {𝐴}} ∈ 𝐹) |
| 14 | 8, 13 | rspcime 3611 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = ∅) → ∃𝑎 ∈ 𝐹 𝑖 ∈ 𝑎) |
| 15 | | p0ex 5359 |
. . . . . . . . . 10
⊢ {∅}
∈ V |
| 16 | 15 | prid1 4743 |
. . . . . . . . 9
⊢ {∅}
∈ {{∅}, {𝐵}} |
| 17 | 16 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = {∅}) ∧ 𝑎 = {{∅}, {𝐵}}) → {∅} ∈ {{∅},
{𝐵}}) |
| 18 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = {∅}) ∧ 𝑎 = {{∅}, {𝐵}}) → 𝑖 = {∅}) |
| 19 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 = {∅}) ∧ 𝑎 = {{∅}, {𝐵}}) → 𝑎 = {{∅}, {𝐵}}) |
| 20 | 17, 18, 19 | 3eltr4d 2850 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 = {∅}) ∧ 𝑎 = {{∅}, {𝐵}}) → 𝑖 ∈ 𝑎) |
| 21 | | prex 5412 |
. . . . . . . . . 10
⊢
{{∅}, {𝐵}}
∈ V |
| 22 | 21 | prid2 4744 |
. . . . . . . . 9
⊢
{{∅}, {𝐵}}
∈ {{∅, {𝐴}},
{{∅}, {𝐵}}} |
| 23 | 22, 11 | eleqtrri 2834 |
. . . . . . . 8
⊢
{{∅}, {𝐵}}
∈ 𝐹 |
| 24 | 23 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = {∅}) → {{∅}, {𝐵}} ∈ 𝐹) |
| 25 | 20, 24 | rspcime 3611 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = {∅}) → ∃𝑎 ∈ 𝐹 𝑖 ∈ 𝑎) |
| 26 | 14, 25 | jaodan 959 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 = ∅ ∨ 𝑖 = {∅})) → ∃𝑎 ∈ 𝐹 𝑖 ∈ 𝑎) |
| 27 | 2, 26 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ {∅, {∅}}) →
∃𝑎 ∈ 𝐹 𝑖 ∈ 𝑎) |
| 28 | | elequ2 2124 |
. . . . 5
⊢ (𝑎 = 𝑣 → (𝑖 ∈ 𝑎 ↔ 𝑖 ∈ 𝑣)) |
| 29 | 28 | cbvrexvw 3225 |
. . . 4
⊢
(∃𝑎 ∈
𝐹 𝑖 ∈ 𝑎 ↔ ∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) |
| 30 | 27, 29 | sylib 218 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ {∅, {∅}}) →
∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) |
| 31 | 30 | ex 412 |
. 2
⊢ (𝜑 → (𝑖 ∈ {∅, {∅}} →
∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣)) |
| 32 | 1, 31 | ralrimi 3244 |
1
⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) |