Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gruex Structured version   Visualization version   GIF version

Theorem gruex 44267
Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
gruex 𝑦 ∈ Univ 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem gruex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rankon 9864 . . 3 (rank‘𝑥) ∈ On
2 inaex 44266 . . 3 ((rank‘𝑥) ∈ On → ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧)
31, 2ax-mp 5 . 2 𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧
4 simplr 768 . . . . . 6 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → (rank‘𝑥) ∈ 𝑧)
5 inawina 10759 . . . . . . . . 9 (𝑧 ∈ Inacc → 𝑧 ∈ Inaccw)
6 winaon 10757 . . . . . . . . 9 (𝑧 ∈ Inaccw𝑧 ∈ On)
75, 6syl 17 . . . . . . . 8 (𝑧 ∈ Inacc → 𝑧 ∈ On)
87ad2antrr 725 . . . . . . 7 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑧 ∈ On)
9 vex 3492 . . . . . . . 8 𝑥 ∈ V
109rankr1a 9905 . . . . . . 7 (𝑧 ∈ On → (𝑥 ∈ (𝑅1𝑧) ↔ (rank‘𝑥) ∈ 𝑧))
118, 10syl 17 . . . . . 6 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → (𝑥 ∈ (𝑅1𝑧) ↔ (rank‘𝑥) ∈ 𝑧))
124, 11mpbird 257 . . . . 5 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑥 ∈ (𝑅1𝑧))
13 simpr 484 . . . . 5 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑦 = (𝑅1𝑧))
1412, 13eleqtrrd 2847 . . . 4 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑥𝑦)
15 simpl 482 . . . . 5 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → 𝑧 ∈ Inacc)
1615inagrud 44265 . . . 4 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → (𝑅1𝑧) ∈ Univ)
1714, 16rspcime 3640 . . 3 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → ∃𝑦 ∈ Univ 𝑥𝑦)
1817rexlimiva 3153 . 2 (∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 → ∃𝑦 ∈ Univ 𝑥𝑦)
193, 18ax-mp 5 1 𝑦 ∈ Univ 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Oncon0 6395  cfv 6573  𝑅1cr1 9831  rankcrnk 9832  Inaccwcwina 10751  Inacccina 10752  Univcgru 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532  ax-groth 10892
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-smo 8402  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-har 9626  df-r1 9833  df-rank 9834  df-card 10008  df-aleph 10009  df-cf 10010  df-acn 10011  df-ac 10185  df-wina 10753  df-ina 10754  df-tsk 10818  df-gru 10860
This theorem is referenced by:  rr-groth  44268  rr-grothprim  44269  rr-grothshort  44273
  Copyright terms: Public domain W3C validator