Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gruex Structured version   Visualization version   GIF version

Theorem gruex 44322
Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
gruex 𝑦 ∈ Univ 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem gruex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rankon 9836 . . 3 (rank‘𝑥) ∈ On
2 inaex 44321 . . 3 ((rank‘𝑥) ∈ On → ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧)
31, 2ax-mp 5 . 2 𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧
4 simplr 768 . . . . . 6 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → (rank‘𝑥) ∈ 𝑧)
5 inawina 10731 . . . . . . . . 9 (𝑧 ∈ Inacc → 𝑧 ∈ Inaccw)
6 winaon 10729 . . . . . . . . 9 (𝑧 ∈ Inaccw𝑧 ∈ On)
75, 6syl 17 . . . . . . . 8 (𝑧 ∈ Inacc → 𝑧 ∈ On)
87ad2antrr 726 . . . . . . 7 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑧 ∈ On)
9 vex 3483 . . . . . . . 8 𝑥 ∈ V
109rankr1a 9877 . . . . . . 7 (𝑧 ∈ On → (𝑥 ∈ (𝑅1𝑧) ↔ (rank‘𝑥) ∈ 𝑧))
118, 10syl 17 . . . . . 6 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → (𝑥 ∈ (𝑅1𝑧) ↔ (rank‘𝑥) ∈ 𝑧))
124, 11mpbird 257 . . . . 5 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑥 ∈ (𝑅1𝑧))
13 simpr 484 . . . . 5 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑦 = (𝑅1𝑧))
1412, 13eleqtrrd 2843 . . . 4 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑥𝑦)
15 simpl 482 . . . . 5 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → 𝑧 ∈ Inacc)
1615inagrud 44320 . . . 4 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → (𝑅1𝑧) ∈ Univ)
1714, 16rspcime 3626 . . 3 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → ∃𝑦 ∈ Univ 𝑥𝑦)
1817rexlimiva 3146 . 2 (∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 → ∃𝑦 ∈ Univ 𝑥𝑦)
193, 18ax-mp 5 1 𝑦 ∈ Univ 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3069  Oncon0 6383  cfv 6560  𝑅1cr1 9803  rankcrnk 9804  Inaccwcwina 10723  Inacccina 10724  Univcgru 10831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-reg 9633  ax-inf2 9682  ax-ac2 10504  ax-groth 10864
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-smo 8387  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-oi 9551  df-har 9598  df-r1 9805  df-rank 9806  df-card 9980  df-aleph 9981  df-cf 9982  df-acn 9983  df-ac 10157  df-wina 10725  df-ina 10726  df-tsk 10790  df-gru 10832
This theorem is referenced by:  rr-groth  44323  rr-grothprim  44324  rr-grothshort  44328
  Copyright terms: Public domain W3C validator