| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gruex | Structured version Visualization version GIF version | ||
| Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| gruex | ⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon 9691 | . . 3 ⊢ (rank‘𝑥) ∈ On | |
| 2 | inaex 44274 | . . 3 ⊢ ((rank‘𝑥) ∈ On → ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 |
| 4 | simplr 768 | . . . . . 6 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → (rank‘𝑥) ∈ 𝑧) | |
| 5 | inawina 10584 | . . . . . . . . 9 ⊢ (𝑧 ∈ Inacc → 𝑧 ∈ Inaccw) | |
| 6 | winaon 10582 | . . . . . . . . 9 ⊢ (𝑧 ∈ Inaccw → 𝑧 ∈ On) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ Inacc → 𝑧 ∈ On) |
| 8 | 7 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑧 ∈ On) |
| 9 | vex 3440 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 10 | 9 | rankr1a 9732 | . . . . . . 7 ⊢ (𝑧 ∈ On → (𝑥 ∈ (𝑅1‘𝑧) ↔ (rank‘𝑥) ∈ 𝑧)) |
| 11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → (𝑥 ∈ (𝑅1‘𝑧) ↔ (rank‘𝑥) ∈ 𝑧)) |
| 12 | 4, 11 | mpbird 257 | . . . . 5 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑥 ∈ (𝑅1‘𝑧)) |
| 13 | simpr 484 | . . . . 5 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑦 = (𝑅1‘𝑧)) | |
| 14 | 12, 13 | eleqtrrd 2831 | . . . 4 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑥 ∈ 𝑦) |
| 15 | simpl 482 | . . . . 5 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → 𝑧 ∈ Inacc) | |
| 16 | 15 | inagrud 44273 | . . . 4 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → (𝑅1‘𝑧) ∈ Univ) |
| 17 | 14, 16 | rspcime 3582 | . . 3 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦) |
| 18 | 17 | rexlimiva 3122 | . 2 ⊢ (∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 → ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦) |
| 19 | 3, 18 | ax-mp 5 | 1 ⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Oncon0 6307 ‘cfv 6482 𝑅1cr1 9658 rankcrnk 9659 Inaccwcwina 10576 Inacccina 10577 Univcgru 10684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 ax-ac2 10357 ax-groth 10717 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-smo 8269 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-har 9449 df-r1 9660 df-rank 9661 df-card 9835 df-aleph 9836 df-cf 9837 df-acn 9838 df-ac 10010 df-wina 10578 df-ina 10579 df-tsk 10643 df-gru 10685 |
| This theorem is referenced by: rr-groth 44276 rr-grothprim 44277 rr-grothshort 44281 |
| Copyright terms: Public domain | W3C validator |