Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gruex | Structured version Visualization version GIF version |
Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
gruex | ⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankon 9552 | . . 3 ⊢ (rank‘𝑥) ∈ On | |
2 | inaex 41883 | . . 3 ⊢ ((rank‘𝑥) ∈ On → ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 |
4 | simplr 766 | . . . . . 6 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → (rank‘𝑥) ∈ 𝑧) | |
5 | inawina 10445 | . . . . . . . . 9 ⊢ (𝑧 ∈ Inacc → 𝑧 ∈ Inaccw) | |
6 | winaon 10443 | . . . . . . . . 9 ⊢ (𝑧 ∈ Inaccw → 𝑧 ∈ On) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ Inacc → 𝑧 ∈ On) |
8 | 7 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑧 ∈ On) |
9 | vex 3435 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
10 | 9 | rankr1a 9593 | . . . . . . 7 ⊢ (𝑧 ∈ On → (𝑥 ∈ (𝑅1‘𝑧) ↔ (rank‘𝑥) ∈ 𝑧)) |
11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → (𝑥 ∈ (𝑅1‘𝑧) ↔ (rank‘𝑥) ∈ 𝑧)) |
12 | 4, 11 | mpbird 256 | . . . . 5 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑥 ∈ (𝑅1‘𝑧)) |
13 | simpr 485 | . . . . 5 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑦 = (𝑅1‘𝑧)) | |
14 | 12, 13 | eleqtrrd 2844 | . . . 4 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑥 ∈ 𝑦) |
15 | simpl 483 | . . . . 5 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → 𝑧 ∈ Inacc) | |
16 | 15 | inagrud 41882 | . . . 4 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → (𝑅1‘𝑧) ∈ Univ) |
17 | 14, 16 | rspcime 3565 | . . 3 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦) |
18 | 17 | rexlimiva 3212 | . 2 ⊢ (∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 → ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦) |
19 | 3, 18 | ax-mp 5 | 1 ⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 Oncon0 6264 ‘cfv 6431 𝑅1cr1 9519 rankcrnk 9520 Inaccwcwina 10437 Inacccina 10438 Univcgru 10545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-reg 9327 ax-inf2 9375 ax-ac2 10218 ax-groth 10578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-smo 8166 df-recs 8191 df-rdg 8230 df-1o 8286 df-2o 8287 df-er 8479 df-map 8598 df-ixp 8667 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-oi 9245 df-har 9292 df-r1 9521 df-rank 9522 df-card 9696 df-aleph 9697 df-cf 9698 df-acn 9699 df-ac 9871 df-wina 10439 df-ina 10440 df-tsk 10504 df-gru 10546 |
This theorem is referenced by: rr-groth 41885 rr-grothprim 41886 rr-grothshort 41890 |
Copyright terms: Public domain | W3C validator |