Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gruex Structured version   Visualization version   GIF version

Theorem gruex 41884
Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
gruex 𝑦 ∈ Univ 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem gruex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rankon 9552 . . 3 (rank‘𝑥) ∈ On
2 inaex 41883 . . 3 ((rank‘𝑥) ∈ On → ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧)
31, 2ax-mp 5 . 2 𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧
4 simplr 766 . . . . . 6 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → (rank‘𝑥) ∈ 𝑧)
5 inawina 10445 . . . . . . . . 9 (𝑧 ∈ Inacc → 𝑧 ∈ Inaccw)
6 winaon 10443 . . . . . . . . 9 (𝑧 ∈ Inaccw𝑧 ∈ On)
75, 6syl 17 . . . . . . . 8 (𝑧 ∈ Inacc → 𝑧 ∈ On)
87ad2antrr 723 . . . . . . 7 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑧 ∈ On)
9 vex 3435 . . . . . . . 8 𝑥 ∈ V
109rankr1a 9593 . . . . . . 7 (𝑧 ∈ On → (𝑥 ∈ (𝑅1𝑧) ↔ (rank‘𝑥) ∈ 𝑧))
118, 10syl 17 . . . . . 6 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → (𝑥 ∈ (𝑅1𝑧) ↔ (rank‘𝑥) ∈ 𝑧))
124, 11mpbird 256 . . . . 5 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑥 ∈ (𝑅1𝑧))
13 simpr 485 . . . . 5 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑦 = (𝑅1𝑧))
1412, 13eleqtrrd 2844 . . . 4 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑥𝑦)
15 simpl 483 . . . . 5 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → 𝑧 ∈ Inacc)
1615inagrud 41882 . . . 4 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → (𝑅1𝑧) ∈ Univ)
1714, 16rspcime 3565 . . 3 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → ∃𝑦 ∈ Univ 𝑥𝑦)
1817rexlimiva 3212 . 2 (∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 → ∃𝑦 ∈ Univ 𝑥𝑦)
193, 18ax-mp 5 1 𝑦 ∈ Univ 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wcel 2110  wrex 3067  Oncon0 6264  cfv 6431  𝑅1cr1 9519  rankcrnk 9520  Inaccwcwina 10437  Inacccina 10438  Univcgru 10545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-reg 9327  ax-inf2 9375  ax-ac2 10218  ax-groth 10578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-smo 8166  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-er 8479  df-map 8598  df-ixp 8667  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-oi 9245  df-har 9292  df-r1 9521  df-rank 9522  df-card 9696  df-aleph 9697  df-cf 9698  df-acn 9699  df-ac 9871  df-wina 10439  df-ina 10440  df-tsk 10504  df-gru 10546
This theorem is referenced by:  rr-groth  41885  rr-grothprim  41886  rr-grothshort  41890
  Copyright terms: Public domain W3C validator