Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gruex Structured version   Visualization version   GIF version

Theorem gruex 41805
Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
gruex 𝑦 ∈ Univ 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem gruex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rankon 9484 . . 3 (rank‘𝑥) ∈ On
2 inaex 41804 . . 3 ((rank‘𝑥) ∈ On → ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧)
31, 2ax-mp 5 . 2 𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧
4 simplr 765 . . . . . 6 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → (rank‘𝑥) ∈ 𝑧)
5 inawina 10377 . . . . . . . . 9 (𝑧 ∈ Inacc → 𝑧 ∈ Inaccw)
6 winaon 10375 . . . . . . . . 9 (𝑧 ∈ Inaccw𝑧 ∈ On)
75, 6syl 17 . . . . . . . 8 (𝑧 ∈ Inacc → 𝑧 ∈ On)
87ad2antrr 722 . . . . . . 7 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑧 ∈ On)
9 vex 3426 . . . . . . . 8 𝑥 ∈ V
109rankr1a 9525 . . . . . . 7 (𝑧 ∈ On → (𝑥 ∈ (𝑅1𝑧) ↔ (rank‘𝑥) ∈ 𝑧))
118, 10syl 17 . . . . . 6 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → (𝑥 ∈ (𝑅1𝑧) ↔ (rank‘𝑥) ∈ 𝑧))
124, 11mpbird 256 . . . . 5 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑥 ∈ (𝑅1𝑧))
13 simpr 484 . . . . 5 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑦 = (𝑅1𝑧))
1412, 13eleqtrrd 2842 . . . 4 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑥𝑦)
15 simpl 482 . . . . 5 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → 𝑧 ∈ Inacc)
1615inagrud 41803 . . . 4 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → (𝑅1𝑧) ∈ Univ)
1714, 16rspcime 3556 . . 3 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → ∃𝑦 ∈ Univ 𝑥𝑦)
1817rexlimiva 3209 . 2 (∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 → ∃𝑦 ∈ Univ 𝑥𝑦)
193, 18ax-mp 5 1 𝑦 ∈ Univ 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  Oncon0 6251  cfv 6418  𝑅1cr1 9451  rankcrnk 9452  Inaccwcwina 10369  Inacccina 10370  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329  ax-ac2 10150  ax-groth 10510
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-smo 8148  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-har 9246  df-r1 9453  df-rank 9454  df-card 9628  df-aleph 9629  df-cf 9630  df-acn 9631  df-ac 9803  df-wina 10371  df-ina 10372  df-tsk 10436  df-gru 10478
This theorem is referenced by:  rr-groth  41806  rr-grothprim  41807  rr-grothshort  41811
  Copyright terms: Public domain W3C validator