| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gruex | Structured version Visualization version GIF version | ||
| Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| gruex | ⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon 9688 | . . 3 ⊢ (rank‘𝑥) ∈ On | |
| 2 | inaex 44400 | . . 3 ⊢ ((rank‘𝑥) ∈ On → ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 |
| 4 | simplr 768 | . . . . . 6 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → (rank‘𝑥) ∈ 𝑧) | |
| 5 | inawina 10581 | . . . . . . . . 9 ⊢ (𝑧 ∈ Inacc → 𝑧 ∈ Inaccw) | |
| 6 | winaon 10579 | . . . . . . . . 9 ⊢ (𝑧 ∈ Inaccw → 𝑧 ∈ On) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ Inacc → 𝑧 ∈ On) |
| 8 | 7 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑧 ∈ On) |
| 9 | vex 3440 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 10 | 9 | rankr1a 9729 | . . . . . . 7 ⊢ (𝑧 ∈ On → (𝑥 ∈ (𝑅1‘𝑧) ↔ (rank‘𝑥) ∈ 𝑧)) |
| 11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → (𝑥 ∈ (𝑅1‘𝑧) ↔ (rank‘𝑥) ∈ 𝑧)) |
| 12 | 4, 11 | mpbird 257 | . . . . 5 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑥 ∈ (𝑅1‘𝑧)) |
| 13 | simpr 484 | . . . . 5 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑦 = (𝑅1‘𝑧)) | |
| 14 | 12, 13 | eleqtrrd 2834 | . . . 4 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑥 ∈ 𝑦) |
| 15 | simpl 482 | . . . . 5 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → 𝑧 ∈ Inacc) | |
| 16 | 15 | inagrud 44399 | . . . 4 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → (𝑅1‘𝑧) ∈ Univ) |
| 17 | 14, 16 | rspcime 3577 | . . 3 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦) |
| 18 | 17 | rexlimiva 3125 | . 2 ⊢ (∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 → ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦) |
| 19 | 3, 18 | ax-mp 5 | 1 ⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Oncon0 6306 ‘cfv 6481 𝑅1cr1 9655 rankcrnk 9656 Inaccwcwina 10573 Inacccina 10574 Univcgru 10681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10354 ax-groth 10714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-smo 8266 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-har 9443 df-r1 9657 df-rank 9658 df-card 9832 df-aleph 9833 df-cf 9834 df-acn 9835 df-ac 10007 df-wina 10575 df-ina 10576 df-tsk 10640 df-gru 10682 |
| This theorem is referenced by: rr-groth 44402 rr-grothprim 44403 rr-grothshort 44407 |
| Copyright terms: Public domain | W3C validator |