| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gruex | Structured version Visualization version GIF version | ||
| Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| gruex | ⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon 9724 | . . 3 ⊢ (rank‘𝑥) ∈ On | |
| 2 | inaex 44259 | . . 3 ⊢ ((rank‘𝑥) ∈ On → ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 |
| 4 | simplr 768 | . . . . . 6 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → (rank‘𝑥) ∈ 𝑧) | |
| 5 | inawina 10619 | . . . . . . . . 9 ⊢ (𝑧 ∈ Inacc → 𝑧 ∈ Inaccw) | |
| 6 | winaon 10617 | . . . . . . . . 9 ⊢ (𝑧 ∈ Inaccw → 𝑧 ∈ On) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ Inacc → 𝑧 ∈ On) |
| 8 | 7 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑧 ∈ On) |
| 9 | vex 3448 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 10 | 9 | rankr1a 9765 | . . . . . . 7 ⊢ (𝑧 ∈ On → (𝑥 ∈ (𝑅1‘𝑧) ↔ (rank‘𝑥) ∈ 𝑧)) |
| 11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → (𝑥 ∈ (𝑅1‘𝑧) ↔ (rank‘𝑥) ∈ 𝑧)) |
| 12 | 4, 11 | mpbird 257 | . . . . 5 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑥 ∈ (𝑅1‘𝑧)) |
| 13 | simpr 484 | . . . . 5 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑦 = (𝑅1‘𝑧)) | |
| 14 | 12, 13 | eleqtrrd 2831 | . . . 4 ⊢ (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1‘𝑧)) → 𝑥 ∈ 𝑦) |
| 15 | simpl 482 | . . . . 5 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → 𝑧 ∈ Inacc) | |
| 16 | 15 | inagrud 44258 | . . . 4 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → (𝑅1‘𝑧) ∈ Univ) |
| 17 | 14, 16 | rspcime 3590 | . . 3 ⊢ ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦) |
| 18 | 17 | rexlimiva 3126 | . 2 ⊢ (∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 → ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦) |
| 19 | 3, 18 | ax-mp 5 | 1 ⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Oncon0 6320 ‘cfv 6499 𝑅1cr1 9691 rankcrnk 9692 Inaccwcwina 10611 Inacccina 10612 Univcgru 10719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 ax-ac2 10392 ax-groth 10752 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-smo 8292 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-har 9486 df-r1 9693 df-rank 9694 df-card 9868 df-aleph 9869 df-cf 9870 df-acn 9871 df-ac 10045 df-wina 10613 df-ina 10614 df-tsk 10678 df-gru 10720 |
| This theorem is referenced by: rr-groth 44261 rr-grothprim 44262 rr-grothshort 44266 |
| Copyright terms: Public domain | W3C validator |