MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbi2com Structured version   Visualization version   GIF version

Theorem simplbi2com 502
Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
Hypothesis
Ref Expression
simplbi2com.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2com (𝜒 → (𝜓𝜑))

Proof of Theorem simplbi2com
StepHypRef Expression
1 simplbi2com.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21simplbi2 500 . 2 (𝜓 → (𝜒𝜑))
32com12 32 1 (𝜒 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  xpidtr  6075  elovmporab  7599  elovmporab1w  7600  elovmporab1  7601  inficl  9334  cfslb2n  10181  repswcshw  14736  cshw1  14746  bezoutlem1  16468  bezoutlem3  16470  modprmn0modprm0  16737  insubm  18710  cnprest  23192  haust1  23255  lly1stc  23399  3cyclfrgrrn1  30247  dfon2lem9  35764  phpreu  37583  poimirlem26  37625  sb5ALT  44499  onfrALTlem2  44520  onfrALTlem2VD  44862  sb5ALTVD  44886  pwclaxpow  44958  funcoressn  47027  ndmaovdistr  47192  2elfz3nn0  47301
  Copyright terms: Public domain W3C validator