| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version | ||
| Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: xpidtr 6095 elovmporab 7635 elovmporab1w 7636 elovmporab1 7637 inficl 9376 cfslb2n 10221 repswcshw 14777 cshw1 14787 bezoutlem1 16509 bezoutlem3 16511 modprmn0modprm0 16778 insubm 18745 cnprest 23176 haust1 23239 lly1stc 23383 3cyclfrgrrn1 30214 dfon2lem9 35779 phpreu 37598 poimirlem26 37640 sb5ALT 44515 onfrALTlem2 44536 onfrALTlem2VD 44878 sb5ALTVD 44902 pwclaxpow 44974 funcoressn 47043 ndmaovdistr 47208 2elfz3nn0 47317 |
| Copyright terms: Public domain | W3C validator |