|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version | ||
| Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | 
| Ref | Expression | 
|---|---|
| simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) | 
| 3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: xpidtr 6142 elovmporab 7679 elovmporab1w 7680 elovmporab1 7681 inficl 9465 cfslb2n 10308 repswcshw 14850 cshw1 14860 bezoutlem1 16576 bezoutlem3 16578 modprmn0modprm0 16845 insubm 18831 cnprest 23297 haust1 23360 lly1stc 23504 3cyclfrgrrn1 30304 dfon2lem9 35792 phpreu 37611 poimirlem26 37653 sb5ALT 44545 onfrALTlem2 44566 onfrALTlem2VD 44909 sb5ALTVD 44933 pwclaxpow 45001 funcoressn 47054 ndmaovdistr 47219 2elfz3nn0 47328 | 
| Copyright terms: Public domain | W3C validator |