![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version |
Description: A deduction eliminating a conjunct, similar to simplbi2 501. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | simplbi2 501 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: xpidtr 6123 elovmporab 7654 elovmporab1w 7655 elovmporab1 7656 inficl 9422 cfslb2n 10265 repswcshw 14764 cshw1 14774 bezoutlem1 16483 bezoutlem3 16485 modprmn0modprm0 16742 insubm 18701 cnprest 22800 haust1 22863 lly1stc 23007 3cyclfrgrrn1 29576 dfon2lem9 34838 phpreu 36564 poimirlem26 36606 sb5ALT 43374 onfrALTlem2 43395 onfrALTlem2VD 43738 sb5ALTVD 43762 funcoressn 45837 ndmaovdistr 46000 2elfz3nn0 46109 |
Copyright terms: Public domain | W3C validator |