Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version |
Description: A deduction eliminating a conjunct, similar to simplbi2 501. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | simplbi2 501 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: xpidtr 6027 elovmporab 7515 elovmporab1w 7516 elovmporab1 7517 inficl 9184 cfslb2n 10024 repswcshw 14525 cshw1 14535 bezoutlem1 16247 bezoutlem3 16249 modprmn0modprm0 16508 insubm 18457 cnprest 22440 haust1 22503 lly1stc 22647 3cyclfrgrrn1 28649 dfon2lem9 33767 phpreu 35761 poimirlem26 35803 sb5ALT 42145 onfrALTlem2 42166 onfrALTlem2VD 42509 sb5ALTVD 42533 funcoressn 44536 ndmaovdistr 44699 2elfz3nn0 44808 |
Copyright terms: Public domain | W3C validator |