![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version |
Description: A deduction eliminating a conjunct, similar to simplbi2 501. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | simplbi2 501 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: xpidtr 6123 elovmporab 7651 elovmporab1w 7652 elovmporab1 7653 inficl 9419 cfslb2n 10262 repswcshw 14761 cshw1 14771 bezoutlem1 16480 bezoutlem3 16482 modprmn0modprm0 16739 insubm 18698 cnprest 22792 haust1 22855 lly1stc 22999 3cyclfrgrrn1 29535 dfon2lem9 34758 phpreu 36467 poimirlem26 36509 sb5ALT 43276 onfrALTlem2 43297 onfrALTlem2VD 43640 sb5ALTVD 43664 funcoressn 45742 ndmaovdistr 45905 2elfz3nn0 46014 |
Copyright terms: Public domain | W3C validator |