| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version | ||
| Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: xpidtr 6098 elovmporab 7638 elovmporab1w 7639 elovmporab1 7640 inficl 9383 cfslb2n 10228 repswcshw 14784 cshw1 14794 bezoutlem1 16516 bezoutlem3 16518 modprmn0modprm0 16785 insubm 18752 cnprest 23183 haust1 23246 lly1stc 23390 3cyclfrgrrn1 30221 dfon2lem9 35786 phpreu 37605 poimirlem26 37647 sb5ALT 44522 onfrALTlem2 44543 onfrALTlem2VD 44885 sb5ALTVD 44909 pwclaxpow 44981 funcoressn 47047 ndmaovdistr 47212 2elfz3nn0 47321 |
| Copyright terms: Public domain | W3C validator |