MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbi2com Structured version   Visualization version   GIF version

Theorem simplbi2com 502
Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
Hypothesis
Ref Expression
simplbi2com.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2com (𝜒 → (𝜓𝜑))

Proof of Theorem simplbi2com
StepHypRef Expression
1 simplbi2com.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21simplbi2 500 . 2 (𝜓 → (𝜒𝜑))
32com12 32 1 (𝜒 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  xpidtr  6098  elovmporab  7638  elovmporab1w  7639  elovmporab1  7640  inficl  9383  cfslb2n  10228  repswcshw  14784  cshw1  14794  bezoutlem1  16516  bezoutlem3  16518  modprmn0modprm0  16785  insubm  18752  cnprest  23183  haust1  23246  lly1stc  23390  3cyclfrgrrn1  30221  dfon2lem9  35786  phpreu  37605  poimirlem26  37647  sb5ALT  44522  onfrALTlem2  44543  onfrALTlem2VD  44885  sb5ALTVD  44909  pwclaxpow  44981  funcoressn  47047  ndmaovdistr  47212  2elfz3nn0  47321
  Copyright terms: Public domain W3C validator