| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version | ||
| Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: xpidtr 6116 elovmporab 7658 elovmporab1w 7659 elovmporab1 7660 inficl 9442 cfslb2n 10287 repswcshw 14835 cshw1 14845 bezoutlem1 16563 bezoutlem3 16565 modprmn0modprm0 16832 insubm 18801 cnprest 23232 haust1 23295 lly1stc 23439 3cyclfrgrrn1 30271 dfon2lem9 35814 phpreu 37633 poimirlem26 37675 sb5ALT 44517 onfrALTlem2 44538 onfrALTlem2VD 44880 sb5ALTVD 44904 pwclaxpow 44976 funcoressn 47038 ndmaovdistr 47203 2elfz3nn0 47312 |
| Copyright terms: Public domain | W3C validator |