| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version | ||
| Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: xpidtr 6073 elovmporab 7598 elovmporab1w 7599 elovmporab1 7600 inficl 9316 cfslb2n 10166 repswcshw 14721 cshw1 14731 bezoutlem1 16452 bezoutlem3 16454 modprmn0modprm0 16721 insubm 18728 cnprest 23205 haust1 23268 lly1stc 23412 3cyclfrgrrn1 30267 dfon2lem9 35854 phpreu 37664 poimirlem26 37706 sb5ALT 44642 onfrALTlem2 44663 onfrALTlem2VD 45005 sb5ALTVD 45029 pwclaxpow 45101 funcoressn 47166 ndmaovdistr 47331 2elfz3nn0 47440 |
| Copyright terms: Public domain | W3C validator |