| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version | ||
| Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: xpidtr 6122 elovmporab 7661 elovmporab1w 7662 elovmporab1 7663 inficl 9447 cfslb2n 10290 repswcshw 14833 cshw1 14843 bezoutlem1 16559 bezoutlem3 16561 modprmn0modprm0 16828 insubm 18801 cnprest 23244 haust1 23307 lly1stc 23451 3cyclfrgrrn1 30233 dfon2lem9 35767 phpreu 37586 poimirlem26 37628 sb5ALT 44517 onfrALTlem2 44538 onfrALTlem2VD 44881 sb5ALTVD 44905 pwclaxpow 44973 funcoressn 47027 ndmaovdistr 47192 2elfz3nn0 47301 |
| Copyright terms: Public domain | W3C validator |