MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbi2com Structured version   Visualization version   GIF version

Theorem simplbi2com 502
Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
Hypothesis
Ref Expression
simplbi2com.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2com (𝜒 → (𝜓𝜑))

Proof of Theorem simplbi2com
StepHypRef Expression
1 simplbi2com.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21simplbi2 500 . 2 (𝜓 → (𝜒𝜑))
32com12 32 1 (𝜒 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  xpidtr  6073  elovmporab  7598  elovmporab1w  7599  elovmporab1  7600  inficl  9316  cfslb2n  10166  repswcshw  14721  cshw1  14731  bezoutlem1  16452  bezoutlem3  16454  modprmn0modprm0  16721  insubm  18728  cnprest  23205  haust1  23268  lly1stc  23412  3cyclfrgrrn1  30267  dfon2lem9  35854  phpreu  37664  poimirlem26  37706  sb5ALT  44642  onfrALTlem2  44663  onfrALTlem2VD  45005  sb5ALTVD  45029  pwclaxpow  45101  funcoressn  47166  ndmaovdistr  47331  2elfz3nn0  47440
  Copyright terms: Public domain W3C validator