MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbi2com Structured version   Visualization version   GIF version

Theorem simplbi2com 502
Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
Hypothesis
Ref Expression
simplbi2com.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2com (𝜒 → (𝜓𝜑))

Proof of Theorem simplbi2com
StepHypRef Expression
1 simplbi2com.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21simplbi2 500 . 2 (𝜓 → (𝜒𝜑))
32com12 32 1 (𝜒 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  xpidtr  6069  elovmporab  7592  elovmporab1w  7593  elovmporab1  7594  inficl  9309  cfslb2n  10156  repswcshw  14716  cshw1  14726  bezoutlem1  16447  bezoutlem3  16449  modprmn0modprm0  16716  insubm  18723  cnprest  23202  haust1  23265  lly1stc  23409  3cyclfrgrrn1  30260  dfon2lem9  35824  phpreu  37643  poimirlem26  37685  sb5ALT  44557  onfrALTlem2  44578  onfrALTlem2VD  44920  sb5ALTVD  44944  pwclaxpow  45016  funcoressn  47072  ndmaovdistr  47237  2elfz3nn0  47346
  Copyright terms: Public domain W3C validator