| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version | ||
| Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: xpidtr 6075 elovmporab 7599 elovmporab1w 7600 elovmporab1 7601 inficl 9334 cfslb2n 10181 repswcshw 14736 cshw1 14746 bezoutlem1 16468 bezoutlem3 16470 modprmn0modprm0 16737 insubm 18710 cnprest 23192 haust1 23255 lly1stc 23399 3cyclfrgrrn1 30247 dfon2lem9 35764 phpreu 37583 poimirlem26 37625 sb5ALT 44499 onfrALTlem2 44520 onfrALTlem2VD 44862 sb5ALTVD 44886 pwclaxpow 44958 funcoressn 47027 ndmaovdistr 47192 2elfz3nn0 47301 |
| Copyright terms: Public domain | W3C validator |