| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version | ||
| Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: xpidtr 6069 elovmporab 7592 elovmporab1w 7593 elovmporab1 7594 inficl 9309 cfslb2n 10156 repswcshw 14716 cshw1 14726 bezoutlem1 16447 bezoutlem3 16449 modprmn0modprm0 16716 insubm 18723 cnprest 23202 haust1 23265 lly1stc 23409 3cyclfrgrrn1 30260 dfon2lem9 35824 phpreu 37643 poimirlem26 37685 sb5ALT 44557 onfrALTlem2 44578 onfrALTlem2VD 44920 sb5ALTVD 44944 pwclaxpow 45016 funcoressn 47072 ndmaovdistr 47237 2elfz3nn0 47346 |
| Copyright terms: Public domain | W3C validator |