![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version |
Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: xpidtr 6154 elovmporab 7696 elovmporab1w 7697 elovmporab1 7698 inficl 9494 cfslb2n 10337 repswcshw 14860 cshw1 14870 bezoutlem1 16586 bezoutlem3 16588 modprmn0modprm0 16854 insubm 18853 cnprest 23318 haust1 23381 lly1stc 23525 3cyclfrgrrn1 30317 dfon2lem9 35755 phpreu 37564 poimirlem26 37606 sb5ALT 44496 onfrALTlem2 44517 onfrALTlem2VD 44860 sb5ALTVD 44884 funcoressn 46957 ndmaovdistr 47122 2elfz3nn0 47231 |
Copyright terms: Public domain | W3C validator |