![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version |
Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: xpidtr 6123 elovmporab 7656 elovmporab1w 7657 elovmporab1 7658 inficl 9424 cfslb2n 10267 repswcshw 14767 cshw1 14777 bezoutlem1 16486 bezoutlem3 16488 modprmn0modprm0 16745 insubm 18736 cnprest 23014 haust1 23077 lly1stc 23221 3cyclfrgrrn1 29806 dfon2lem9 35068 phpreu 36776 poimirlem26 36818 sb5ALT 43589 onfrALTlem2 43610 onfrALTlem2VD 43953 sb5ALTVD 43977 funcoressn 46051 ndmaovdistr 46214 2elfz3nn0 46323 |
Copyright terms: Public domain | W3C validator |