MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbi2com Structured version   Visualization version   GIF version

Theorem simplbi2com 502
Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
Hypothesis
Ref Expression
simplbi2com.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2com (𝜒 → (𝜓𝜑))

Proof of Theorem simplbi2com
StepHypRef Expression
1 simplbi2com.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21simplbi2 500 . 2 (𝜓 → (𝜒𝜑))
32com12 32 1 (𝜒 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  xpidtr  6123  elovmporab  7656  elovmporab1w  7657  elovmporab1  7658  inficl  9424  cfslb2n  10267  repswcshw  14767  cshw1  14777  bezoutlem1  16486  bezoutlem3  16488  modprmn0modprm0  16745  insubm  18736  cnprest  23014  haust1  23077  lly1stc  23221  3cyclfrgrrn1  29806  dfon2lem9  35068  phpreu  36776  poimirlem26  36818  sb5ALT  43589  onfrALTlem2  43610  onfrALTlem2VD  43953  sb5ALTVD  43977  funcoressn  46051  ndmaovdistr  46214  2elfz3nn0  46323
  Copyright terms: Public domain W3C validator