MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbi2com Structured version   Visualization version   GIF version

Theorem simplbi2com 502
Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
Hypothesis
Ref Expression
simplbi2com.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2com (𝜒 → (𝜓𝜑))

Proof of Theorem simplbi2com
StepHypRef Expression
1 simplbi2com.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21simplbi2 500 . 2 (𝜓 → (𝜒𝜑))
32com12 32 1 (𝜒 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  xpidtr  6142  elovmporab  7679  elovmporab1w  7680  elovmporab1  7681  inficl  9465  cfslb2n  10308  repswcshw  14850  cshw1  14860  bezoutlem1  16576  bezoutlem3  16578  modprmn0modprm0  16845  insubm  18831  cnprest  23297  haust1  23360  lly1stc  23504  3cyclfrgrrn1  30304  dfon2lem9  35792  phpreu  37611  poimirlem26  37653  sb5ALT  44545  onfrALTlem2  44566  onfrALTlem2VD  44909  sb5ALTVD  44933  pwclaxpow  45001  funcoressn  47054  ndmaovdistr  47219  2elfz3nn0  47328
  Copyright terms: Public domain W3C validator