Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version |
Description: A deduction eliminating a conjunct, similar to simplbi2 502. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | simplbi2 502 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: xpidtr 6067 elovmporab 7582 elovmporab1w 7583 elovmporab1 7584 inficl 9287 cfslb2n 10130 repswcshw 14624 cshw1 14634 bezoutlem1 16347 bezoutlem3 16349 modprmn0modprm0 16606 insubm 18555 cnprest 22546 haust1 22609 lly1stc 22753 3cyclfrgrrn1 28937 dfon2lem9 34050 phpreu 35915 poimirlem26 35957 sb5ALT 42516 onfrALTlem2 42537 onfrALTlem2VD 42880 sb5ALTVD 42904 funcoressn 44952 ndmaovdistr 45115 2elfz3nn0 45224 |
Copyright terms: Public domain | W3C validator |