MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbi2com Structured version   Visualization version   GIF version

Theorem simplbi2com 504
Description: A deduction eliminating a conjunct, similar to simplbi2 502. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
Hypothesis
Ref Expression
simplbi2com.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2com (𝜒 → (𝜓𝜑))

Proof of Theorem simplbi2com
StepHypRef Expression
1 simplbi2com.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21simplbi2 502 . 2 (𝜓 → (𝜒𝜑))
32com12 32 1 (𝜒 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  xpidtr  6067  elovmporab  7582  elovmporab1w  7583  elovmporab1  7584  inficl  9287  cfslb2n  10130  repswcshw  14624  cshw1  14634  bezoutlem1  16347  bezoutlem3  16349  modprmn0modprm0  16606  insubm  18555  cnprest  22546  haust1  22609  lly1stc  22753  3cyclfrgrrn1  28937  dfon2lem9  34050  phpreu  35915  poimirlem26  35957  sb5ALT  42516  onfrALTlem2  42537  onfrALTlem2VD  42880  sb5ALTVD  42904  funcoressn  44952  ndmaovdistr  45115  2elfz3nn0  45224
  Copyright terms: Public domain W3C validator