Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplbi2com | Structured version Visualization version GIF version |
Description: A deduction eliminating a conjunct, similar to simplbi2 500. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
simplbi2com.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2com | ⊢ (𝜒 → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2com.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | simplbi2 500 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) |
3 | 2 | com12 32 | 1 ⊢ (𝜒 → (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: xpidtr 6016 elovmporab 7493 elovmporab1w 7494 elovmporab1 7495 inficl 9114 cfslb2n 9955 repswcshw 14453 cshw1 14463 bezoutlem1 16175 bezoutlem3 16177 modprmn0modprm0 16436 insubm 18372 cnprest 22348 haust1 22411 lly1stc 22555 3cyclfrgrrn1 28550 dfon2lem9 33673 phpreu 35688 poimirlem26 35730 sb5ALT 42034 onfrALTlem2 42055 onfrALTlem2VD 42398 sb5ALTVD 42422 funcoressn 44423 ndmaovdistr 44586 2elfz3nn0 44696 |
Copyright terms: Public domain | W3C validator |