![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj121 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj121.1 | ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
bnj121.2 | ⊢ (𝜁′ ↔ [1o / 𝑛]𝜁) |
bnj121.3 | ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) |
bnj121.4 | ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) |
Ref | Expression |
---|---|
bnj121 | ⊢ (𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj121.1 | . . 3 ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
2 | 1 | sbcbii 3838 | . 2 ⊢ ([1o / 𝑛]𝜁 ↔ [1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
3 | bnj121.2 | . 2 ⊢ (𝜁′ ↔ [1o / 𝑛]𝜁) | |
4 | bnj105 33735 | . . . . . . . 8 ⊢ 1o ∈ V | |
5 | 4 | bnj90 33733 | . . . . . . 7 ⊢ ([1o / 𝑛]𝑓 Fn 𝑛 ↔ 𝑓 Fn 1o) |
6 | 5 | bicomi 223 | . . . . . 6 ⊢ (𝑓 Fn 1o ↔ [1o / 𝑛]𝑓 Fn 𝑛) |
7 | bnj121.3 | . . . . . 6 ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) | |
8 | bnj121.4 | . . . . . 6 ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) | |
9 | 6, 7, 8 | 3anbi123i 1156 | . . . . 5 ⊢ ((𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ↔ ([1o / 𝑛]𝑓 Fn 𝑛 ∧ [1o / 𝑛]𝜑 ∧ [1o / 𝑛]𝜓)) |
10 | sbc3an 3848 | . . . . 5 ⊢ ([1o / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ([1o / 𝑛]𝑓 Fn 𝑛 ∧ [1o / 𝑛]𝜑 ∧ [1o / 𝑛]𝜓)) | |
11 | 9, 10 | bitr4i 278 | . . . 4 ⊢ ((𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′) ↔ [1o / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
12 | 11 | imbi2i 336 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [1o / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
13 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑛(𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) | |
14 | 13 | sbc19.21g 3856 | . . . 4 ⊢ (1o ∈ V → ([1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [1o / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) |
15 | 4, 14 | ax-mp 5 | . . 3 ⊢ ([1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [1o / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
16 | 12, 15 | bitr4i 278 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
17 | 2, 3, 16 | 3bitr4i 303 | 1 ⊢ (𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 Vcvv 3475 [wsbc 3778 Fn wfn 6539 1oc1o 8459 FrSe w-bnj15 33703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-pw 4605 df-sn 4630 df-suc 6371 df-fn 6547 df-1o 8466 |
This theorem is referenced by: bnj150 33887 bnj153 33891 |
Copyright terms: Public domain | W3C validator |