Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj121 Structured version   Visualization version   GIF version

Theorem bnj121 32135
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj121.1 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
bnj121.2 (𝜁′[1o / 𝑛]𝜁)
bnj121.3 (𝜑′[1o / 𝑛]𝜑)
bnj121.4 (𝜓′[1o / 𝑛]𝜓)
Assertion
Ref Expression
bnj121 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
Distinct variable groups:   𝐴,𝑛   𝑅,𝑛   𝑓,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑛)   𝜓(𝑥,𝑓,𝑛)   𝜁(𝑥,𝑓,𝑛)   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝜑′(𝑥,𝑓,𝑛)   𝜓′(𝑥,𝑓,𝑛)   𝜁′(𝑥,𝑓,𝑛)

Proof of Theorem bnj121
StepHypRef Expression
1 bnj121.1 . . 3 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
21sbcbii 3827 . 2 ([1o / 𝑛]𝜁[1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
3 bnj121.2 . 2 (𝜁′[1o / 𝑛]𝜁)
4 bnj105 31987 . . . . . . . 8 1o ∈ V
54bnj90 31985 . . . . . . 7 ([1o / 𝑛]𝑓 Fn 𝑛𝑓 Fn 1o)
65bicomi 226 . . . . . 6 (𝑓 Fn 1o[1o / 𝑛]𝑓 Fn 𝑛)
7 bnj121.3 . . . . . 6 (𝜑′[1o / 𝑛]𝜑)
8 bnj121.4 . . . . . 6 (𝜓′[1o / 𝑛]𝜓)
96, 7, 83anbi123i 1150 . . . . 5 ((𝑓 Fn 1o𝜑′𝜓′) ↔ ([1o / 𝑛]𝑓 Fn 𝑛[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
10 sbc3an 3836 . . . . 5 ([1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓) ↔ ([1o / 𝑛]𝑓 Fn 𝑛[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
119, 10bitr4i 280 . . . 4 ((𝑓 Fn 1o𝜑′𝜓′) ↔ [1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
1211imbi2i 338 . . 3 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓)))
13 nfv 1909 . . . . 5 𝑛(𝑅 FrSe 𝐴𝑥𝐴)
1413sbc19.21g 3844 . . . 4 (1o ∈ V → ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓))))
154, 14ax-mp 5 . . 3 ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓)))
1612, 15bitr4i 280 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
172, 3, 163bitr4i 305 1 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1082   ∈ wcel 2108  Vcvv 3493  [wsbc 3770   Fn wfn 6343  1oc1o 8087   FrSe w-bnj15 31955 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-pw 4539  df-sn 4560  df-suc 6190  df-fn 6351  df-1o 8094 This theorem is referenced by:  bnj150  32141  bnj153  32145
 Copyright terms: Public domain W3C validator