Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj121 Structured version   Visualization version   GIF version

Theorem bnj121 32850
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj121.1 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
bnj121.2 (𝜁′[1o / 𝑛]𝜁)
bnj121.3 (𝜑′[1o / 𝑛]𝜑)
bnj121.4 (𝜓′[1o / 𝑛]𝜓)
Assertion
Ref Expression
bnj121 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
Distinct variable groups:   𝐴,𝑛   𝑅,𝑛   𝑓,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑛)   𝜓(𝑥,𝑓,𝑛)   𝜁(𝑥,𝑓,𝑛)   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝜑′(𝑥,𝑓,𝑛)   𝜓′(𝑥,𝑓,𝑛)   𝜁′(𝑥,𝑓,𝑛)

Proof of Theorem bnj121
StepHypRef Expression
1 bnj121.1 . . 3 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
21sbcbii 3776 . 2 ([1o / 𝑛]𝜁[1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
3 bnj121.2 . 2 (𝜁′[1o / 𝑛]𝜁)
4 bnj105 32703 . . . . . . . 8 1o ∈ V
54bnj90 32701 . . . . . . 7 ([1o / 𝑛]𝑓 Fn 𝑛𝑓 Fn 1o)
65bicomi 223 . . . . . 6 (𝑓 Fn 1o[1o / 𝑛]𝑓 Fn 𝑛)
7 bnj121.3 . . . . . 6 (𝜑′[1o / 𝑛]𝜑)
8 bnj121.4 . . . . . 6 (𝜓′[1o / 𝑛]𝜓)
96, 7, 83anbi123i 1154 . . . . 5 ((𝑓 Fn 1o𝜑′𝜓′) ↔ ([1o / 𝑛]𝑓 Fn 𝑛[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
10 sbc3an 3786 . . . . 5 ([1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓) ↔ ([1o / 𝑛]𝑓 Fn 𝑛[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
119, 10bitr4i 277 . . . 4 ((𝑓 Fn 1o𝜑′𝜓′) ↔ [1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
1211imbi2i 336 . . 3 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓)))
13 nfv 1917 . . . . 5 𝑛(𝑅 FrSe 𝐴𝑥𝐴)
1413sbc19.21g 3794 . . . 4 (1o ∈ V → ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓))))
154, 14ax-mp 5 . . 3 ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓)))
1612, 15bitr4i 277 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
172, 3, 163bitr4i 303 1 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  Vcvv 3432  [wsbc 3716   Fn wfn 6428  1oc1o 8290   FrSe w-bnj15 32671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-suc 6272  df-fn 6436  df-1o 8297
This theorem is referenced by:  bnj150  32856  bnj153  32860
  Copyright terms: Public domain W3C validator