![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj121 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj121.1 | ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
bnj121.2 | ⊢ (𝜁′ ↔ [1𝑜 / 𝑛]𝜁) |
bnj121.3 | ⊢ (𝜑′ ↔ [1𝑜 / 𝑛]𝜑) |
bnj121.4 | ⊢ (𝜓′ ↔ [1𝑜 / 𝑛]𝜓) |
Ref | Expression |
---|---|
bnj121 | ⊢ (𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj121.1 | . . 3 ⊢ (𝜁 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
2 | 1 | sbcbii 3689 | . 2 ⊢ ([1𝑜 / 𝑛]𝜁 ↔ [1𝑜 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
3 | bnj121.2 | . 2 ⊢ (𝜁′ ↔ [1𝑜 / 𝑛]𝜁) | |
4 | bnj105 31310 | . . . . . . . 8 ⊢ 1𝑜 ∈ V | |
5 | 4 | bnj90 31308 | . . . . . . 7 ⊢ ([1𝑜 / 𝑛]𝑓 Fn 𝑛 ↔ 𝑓 Fn 1𝑜) |
6 | 5 | bicomi 216 | . . . . . 6 ⊢ (𝑓 Fn 1𝑜 ↔ [1𝑜 / 𝑛]𝑓 Fn 𝑛) |
7 | bnj121.3 | . . . . . 6 ⊢ (𝜑′ ↔ [1𝑜 / 𝑛]𝜑) | |
8 | bnj121.4 | . . . . . 6 ⊢ (𝜓′ ↔ [1𝑜 / 𝑛]𝜓) | |
9 | 6, 7, 8 | 3anbi123i 1195 | . . . . 5 ⊢ ((𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′) ↔ ([1𝑜 / 𝑛]𝑓 Fn 𝑛 ∧ [1𝑜 / 𝑛]𝜑 ∧ [1𝑜 / 𝑛]𝜓)) |
10 | sbc3an 3691 | . . . . 5 ⊢ ([1𝑜 / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ([1𝑜 / 𝑛]𝑓 Fn 𝑛 ∧ [1𝑜 / 𝑛]𝜑 ∧ [1𝑜 / 𝑛]𝜓)) | |
11 | 9, 10 | bitr4i 270 | . . . 4 ⊢ ((𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′) ↔ [1𝑜 / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
12 | 11 | imbi2i 328 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [1𝑜 / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
13 | nfv 2010 | . . . . 5 ⊢ Ⅎ𝑛(𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) | |
14 | 13 | sbc19.21g 3698 | . . . 4 ⊢ (1𝑜 ∈ V → ([1𝑜 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [1𝑜 / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)))) |
15 | 4, 14 | ax-mp 5 | . . 3 ⊢ ([1𝑜 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [1𝑜 / 𝑛](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
16 | 12, 15 | bitr4i 270 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) ↔ [1𝑜 / 𝑛]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
17 | 2, 3, 16 | 3bitr4i 295 | 1 ⊢ (𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 Vcvv 3385 [wsbc 3633 Fn wfn 6096 1𝑜c1o 7792 FrSe w-bnj15 31278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-pw 4351 df-sn 4369 df-suc 5947 df-fn 6104 df-1o 7799 |
This theorem is referenced by: bnj150 31463 bnj153 31467 |
Copyright terms: Public domain | W3C validator |