Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj130 Structured version   Visualization version   GIF version

Theorem bnj130 32148
Description: Technical lemma for bnj151 32151. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj130.1 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj130.2 (𝜑′[1o / 𝑛]𝜑)
bnj130.3 (𝜓′[1o / 𝑛]𝜓)
bnj130.4 (𝜃′[1o / 𝑛]𝜃)
Assertion
Ref Expression
bnj130 (𝜃′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1o𝜑′𝜓′)))
Distinct variable groups:   𝐴,𝑛   𝑅,𝑛   𝑓,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑛)   𝜓(𝑥,𝑓,𝑛)   𝜃(𝑥,𝑓,𝑛)   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝜑′(𝑥,𝑓,𝑛)   𝜓′(𝑥,𝑓,𝑛)   𝜃′(𝑥,𝑓,𝑛)

Proof of Theorem bnj130
StepHypRef Expression
1 bnj130.1 . . 3 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
21sbcbii 3831 . 2 ([1o / 𝑛]𝜃[1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3 bnj130.4 . 2 (𝜃′[1o / 𝑛]𝜃)
4 bnj105 31996 . . . . . . . . . 10 1o ∈ V
54bnj90 31994 . . . . . . . . 9 ([1o / 𝑛]𝑓 Fn 𝑛𝑓 Fn 1o)
65bicomi 226 . . . . . . . 8 (𝑓 Fn 1o[1o / 𝑛]𝑓 Fn 𝑛)
7 bnj130.2 . . . . . . . 8 (𝜑′[1o / 𝑛]𝜑)
8 bnj130.3 . . . . . . . 8 (𝜓′[1o / 𝑛]𝜓)
96, 7, 83anbi123i 1151 . . . . . . 7 ((𝑓 Fn 1o𝜑′𝜓′) ↔ ([1o / 𝑛]𝑓 Fn 𝑛[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
10 sbc3an 3840 . . . . . . 7 ([1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓) ↔ ([1o / 𝑛]𝑓 Fn 𝑛[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
119, 10bitr4i 280 . . . . . 6 ((𝑓 Fn 1o𝜑′𝜓′) ↔ [1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
1211eubii 2670 . . . . 5 (∃!𝑓(𝑓 Fn 1o𝜑′𝜓′) ↔ ∃!𝑓[1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
134bnj89 31993 . . . . 5 ([1o / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ ∃!𝑓[1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
1412, 13bitr4i 280 . . . 4 (∃!𝑓(𝑓 Fn 1o𝜑′𝜓′) ↔ [1o / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
1514imbi2i 338 . . 3 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
16 nfv 1915 . . . . 5 𝑛(𝑅 FrSe 𝐴𝑥𝐴)
1716sbc19.21g 3848 . . . 4 (1o ∈ V → ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))))
184, 17ax-mp 5 . . 3 ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
1915, 18bitr4i 280 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1o𝜑′𝜓′)) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
202, 3, 193bitr4i 305 1 (𝜃′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1o𝜑′𝜓′)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  ∃!weu 2653  Vcvv 3496  [wsbc 3774   Fn wfn 6352  1oc1o 8097   FrSe w-bnj15 31964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-pw 4543  df-sn 4570  df-suc 6199  df-fn 6360  df-1o 8104
This theorem is referenced by:  bnj151  32151
  Copyright terms: Public domain W3C validator