Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj130 Structured version   Visualization version   GIF version

Theorem bnj130 34905
Description: Technical lemma for bnj151 34908. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj130.1 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj130.2 (𝜑′[1o / 𝑛]𝜑)
bnj130.3 (𝜓′[1o / 𝑛]𝜓)
bnj130.4 (𝜃′[1o / 𝑛]𝜃)
Assertion
Ref Expression
bnj130 (𝜃′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1o𝜑′𝜓′)))
Distinct variable groups:   𝐴,𝑛   𝑅,𝑛   𝑓,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑛)   𝜓(𝑥,𝑓,𝑛)   𝜃(𝑥,𝑓,𝑛)   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝜑′(𝑥,𝑓,𝑛)   𝜓′(𝑥,𝑓,𝑛)   𝜃′(𝑥,𝑓,𝑛)

Proof of Theorem bnj130
StepHypRef Expression
1 bnj130.1 . . 3 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
21sbcbii 3822 . 2 ([1o / 𝑛]𝜃[1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3 bnj130.4 . 2 (𝜃′[1o / 𝑛]𝜃)
4 bnj105 34755 . . . . . . . . . 10 1o ∈ V
54bnj90 34753 . . . . . . . . 9 ([1o / 𝑛]𝑓 Fn 𝑛𝑓 Fn 1o)
65bicomi 224 . . . . . . . 8 (𝑓 Fn 1o[1o / 𝑛]𝑓 Fn 𝑛)
7 bnj130.2 . . . . . . . 8 (𝜑′[1o / 𝑛]𝜑)
8 bnj130.3 . . . . . . . 8 (𝜓′[1o / 𝑛]𝜓)
96, 7, 83anbi123i 1155 . . . . . . 7 ((𝑓 Fn 1o𝜑′𝜓′) ↔ ([1o / 𝑛]𝑓 Fn 𝑛[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
10 sbc3an 3830 . . . . . . 7 ([1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓) ↔ ([1o / 𝑛]𝑓 Fn 𝑛[1o / 𝑛]𝜑[1o / 𝑛]𝜓))
119, 10bitr4i 278 . . . . . 6 ((𝑓 Fn 1o𝜑′𝜓′) ↔ [1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
1211eubii 2584 . . . . 5 (∃!𝑓(𝑓 Fn 1o𝜑′𝜓′) ↔ ∃!𝑓[1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
134bnj89 34752 . . . . 5 ([1o / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ ∃!𝑓[1o / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
1412, 13bitr4i 278 . . . 4 (∃!𝑓(𝑓 Fn 1o𝜑′𝜓′) ↔ [1o / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
1514imbi2i 336 . . 3 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
16 nfv 1914 . . . . 5 𝑛(𝑅 FrSe 𝐴𝑥𝐴)
1716sbc19.21g 3837 . . . 4 (1o ∈ V → ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))))
184, 17ax-mp 5 . . 3 ([1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1o / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
1915, 18bitr4i 278 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1o𝜑′𝜓′)) ↔ [1o / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
202, 3, 193bitr4i 303 1 (𝜃′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1o𝜑′𝜓′)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  ∃!weu 2567  Vcvv 3459  [wsbc 3765   Fn wfn 6526  1oc1o 8473   FrSe w-bnj15 34723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-pw 4577  df-sn 4602  df-suc 6358  df-fn 6534  df-1o 8480
This theorem is referenced by:  bnj151  34908
  Copyright terms: Public domain W3C validator