Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcco3gw | Structured version Visualization version GIF version |
Description: Composition of two substitutions. Version of sbcco3g 4358 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 27-Nov-2005.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
sbcco3gw.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sbcco3gw | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcnestgw 4351 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | |
2 | elex 3440 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | nfcvd 2907 | . . . 4 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) | |
4 | sbcco3gw.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | 3, 4 | csbiegf 3862 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
6 | dfsbcq 3713 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = 𝐶 → ([⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) | |
7 | 2, 5, 6 | 3syl 18 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
8 | 1, 7 | bitrd 278 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 [wsbc 3711 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: fzshftral 13273 2rexfrabdioph 40534 3rexfrabdioph 40535 4rexfrabdioph 40536 6rexfrabdioph 40537 7rexfrabdioph 40538 |
Copyright terms: Public domain | W3C validator |