MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcco3gw Structured version   Visualization version   GIF version

Theorem sbcco3gw 4391
Description: Composition of two substitutions. Version of sbcco3g 4396 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 27-Nov-2005.) Avoid ax-13 2371. (Revised by GG, 26-Jan-2024.)
Hypothesis
Ref Expression
sbcco3gw.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
sbcco3gw (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐶   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcco3gw
StepHypRef Expression
1 sbcnestgw 4389 . 2 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
2 elex 3471 . . 3 (𝐴𝑉𝐴 ∈ V)
3 nfcvd 2893 . . . 4 (𝐴 ∈ V → 𝑥𝐶)
4 sbcco3gw.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
53, 4csbiegf 3898 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐶)
6 dfsbcq 3758 . . 3 (𝐴 / 𝑥𝐵 = 𝐶 → ([𝐴 / 𝑥𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
72, 5, 63syl 18 . 2 (𝐴𝑉 → ([𝐴 / 𝑥𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
81, 7bitrd 279 1 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3450  [wsbc 3756  csb 3865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-sbc 3757  df-csb 3866
This theorem is referenced by:  fzshftral  13583  2rexfrabdioph  42791  3rexfrabdioph  42792  4rexfrabdioph  42793  6rexfrabdioph  42794  7rexfrabdioph  42795
  Copyright terms: Public domain W3C validator