Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdc1 Structured version   Visualization version   GIF version

Theorem fdc1 35335
 Description: Variant of fdc 35334 with no specified base value. (Contributed by Jeff Madsen, 18-Jun-2010.)
Hypotheses
Ref Expression
fdc1.1 𝐴 ∈ V
fdc1.2 𝑀 ∈ ℤ
fdc1.3 𝑍 = (ℤ𝑀)
fdc1.4 𝑁 = (𝑀 + 1)
fdc1.5 (𝑎 = (𝑓𝑀) → (𝜁𝜎))
fdc1.6 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
fdc1.7 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
fdc1.8 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
fdc1.9 (𝜂 → ∃𝑎𝐴 𝜁)
fdc1.10 (𝜂𝑅 Fr 𝐴)
fdc1.11 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
fdc1.12 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
Assertion
Ref Expression
fdc1 (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑛   𝑅,𝑎,𝑏   𝑀,𝑎,𝑏,𝑓,𝑘,𝑛   𝑍,𝑎,𝑏,𝑛   𝑁,𝑎,𝑏,𝑓,𝑘,𝑛   𝜑,𝑓,𝑘   𝜓,𝑎   𝜒,𝑎,𝑏,𝑛   𝜃,𝑓,𝑛   𝜏,𝑎,𝑏   𝜂,𝑎,𝑏,𝑓,𝑛   𝜁,𝑏,𝑓,𝑛   𝜎,𝑎
Allowed substitution hints:   𝜑(𝑛,𝑎,𝑏)   𝜓(𝑓,𝑘,𝑛,𝑏)   𝜒(𝑓,𝑘)   𝜃(𝑘,𝑎,𝑏)   𝜏(𝑓,𝑘,𝑛)   𝜂(𝑘)   𝜁(𝑘,𝑎)   𝜎(𝑓,𝑘,𝑛,𝑏)   𝐴(𝑘)   𝑅(𝑓,𝑘,𝑛)   𝑍(𝑓,𝑘)

Proof of Theorem fdc1
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2872 . . . . . 6 (𝑐 = 𝑎 → (𝑐𝐴𝑎𝐴))
21anbi2d 631 . . . . 5 (𝑐 = 𝑎 → ((𝜂𝑐𝐴) ↔ (𝜂𝑎𝐴)))
3 sbceq2a 3734 . . . . 5 (𝑐 = 𝑎 → ([𝑐 / 𝑎]𝜁𝜁))
42, 3anbi12d 633 . . . 4 (𝑐 = 𝑎 → (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) ↔ ((𝜂𝑎𝐴) ∧ 𝜁)))
54imbi1d 345 . . 3 (𝑐 = 𝑎 → ((((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) ↔ (((𝜂𝑎𝐴) ∧ 𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))))
6 fdc1.1 . . . . . 6 𝐴 ∈ V
7 fdc1.2 . . . . . 6 𝑀 ∈ ℤ
8 fdc1.3 . . . . . 6 𝑍 = (ℤ𝑀)
9 fdc1.4 . . . . . 6 𝑁 = (𝑀 + 1)
10 sbsbc 3726 . . . . . . 7 ([𝑑 / 𝑎]𝜑[𝑑 / 𝑎]𝜑)
11 nfv 1915 . . . . . . . 8 𝑎𝜓
12 fdc1.6 . . . . . . . 8 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
1311, 12sbhypf 3501 . . . . . . 7 (𝑑 = (𝑓‘(𝑘 − 1)) → ([𝑑 / 𝑎]𝜑𝜓))
1410, 13bitr3id 288 . . . . . 6 (𝑑 = (𝑓‘(𝑘 − 1)) → ([𝑑 / 𝑎]𝜑𝜓))
15 fdc1.7 . . . . . 6 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
16 sbsbc 3726 . . . . . . 7 ([𝑑 / 𝑎]𝜃[𝑑 / 𝑎]𝜃)
17 nfv 1915 . . . . . . . 8 𝑎𝜏
18 fdc1.8 . . . . . . . 8 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
1917, 18sbhypf 3501 . . . . . . 7 (𝑑 = (𝑓𝑛) → ([𝑑 / 𝑎]𝜃𝜏))
2016, 19bitr3id 288 . . . . . 6 (𝑑 = (𝑓𝑛) → ([𝑑 / 𝑎]𝜃𝜏))
21 simprl 770 . . . . . 6 ((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) → 𝑐𝐴)
22 fdc1.10 . . . . . . 7 (𝜂𝑅 Fr 𝐴)
2322adantr 484 . . . . . 6 ((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) → 𝑅 Fr 𝐴)
24 nfv 1915 . . . . . . . . 9 𝑎(𝜂𝑑𝐴)
25 nfsbc1v 3742 . . . . . . . . . 10 𝑎[𝑑 / 𝑎]𝜃
26 nfcv 2955 . . . . . . . . . . 11 𝑎𝐴
27 nfsbc1v 3742 . . . . . . . . . . 11 𝑎[𝑑 / 𝑎]𝜑
2826, 27nfrex 3269 . . . . . . . . . 10 𝑎𝑏𝐴 [𝑑 / 𝑎]𝜑
2925, 28nfor 1905 . . . . . . . . 9 𝑎([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑)
3024, 29nfim 1897 . . . . . . . 8 𝑎((𝜂𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
31 eleq1w 2872 . . . . . . . . . 10 (𝑎 = 𝑑 → (𝑎𝐴𝑑𝐴))
3231anbi2d 631 . . . . . . . . 9 (𝑎 = 𝑑 → ((𝜂𝑎𝐴) ↔ (𝜂𝑑𝐴)))
33 sbceq1a 3733 . . . . . . . . . 10 (𝑎 = 𝑑 → (𝜃[𝑑 / 𝑎]𝜃))
34 sbceq1a 3733 . . . . . . . . . . 11 (𝑎 = 𝑑 → (𝜑[𝑑 / 𝑎]𝜑))
3534rexbidv 3257 . . . . . . . . . 10 (𝑎 = 𝑑 → (∃𝑏𝐴 𝜑 ↔ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
3633, 35orbi12d 916 . . . . . . . . 9 (𝑎 = 𝑑 → ((𝜃 ∨ ∃𝑏𝐴 𝜑) ↔ ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑)))
3732, 36imbi12d 348 . . . . . . . 8 (𝑎 = 𝑑 → (((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑)) ↔ ((𝜂𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))))
38 fdc1.11 . . . . . . . 8 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
3930, 37, 38chvarfv 2240 . . . . . . 7 ((𝜂𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
4039adantlr 714 . . . . . 6 (((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) ∧ 𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
41 nfv 1915 . . . . . . . . . . 11 𝑎𝜂
4241, 27nfan 1900 . . . . . . . . . 10 𝑎(𝜂[𝑑 / 𝑎]𝜑)
43 nfv 1915 . . . . . . . . . 10 𝑎(𝑑𝐴𝑏𝐴)
4442, 43nfan 1900 . . . . . . . . 9 𝑎((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴))
45 nfv 1915 . . . . . . . . 9 𝑎 𝑏𝑅𝑑
4644, 45nfim 1897 . . . . . . . 8 𝑎(((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)
4734anbi2d 631 . . . . . . . . . 10 (𝑎 = 𝑑 → ((𝜂𝜑) ↔ (𝜂[𝑑 / 𝑎]𝜑)))
4831anbi1d 632 . . . . . . . . . 10 (𝑎 = 𝑑 → ((𝑎𝐴𝑏𝐴) ↔ (𝑑𝐴𝑏𝐴)))
4947, 48anbi12d 633 . . . . . . . . 9 (𝑎 = 𝑑 → (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ↔ ((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴))))
50 breq2 5038 . . . . . . . . 9 (𝑎 = 𝑑 → (𝑏𝑅𝑎𝑏𝑅𝑑))
5149, 50imbi12d 348 . . . . . . . 8 (𝑎 = 𝑑 → ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎) ↔ (((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)))
52 fdc1.12 . . . . . . . 8 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
5346, 51, 52chvarfv 2240 . . . . . . 7 (((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)
5453adantllr 718 . . . . . 6 ((((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) ∧ [𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)
556, 7, 8, 9, 14, 15, 20, 21, 23, 40, 54fdc 35334 . . . . 5 ((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
5655anassrs 471 . . . 4 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
57 idd 24 . . . . . . 7 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑛)⟶𝐴))
58 dfsbcq 3724 . . . . . . . . . . 11 ((𝑓𝑀) = 𝑐 → ([(𝑓𝑀) / 𝑎]𝜁[𝑐 / 𝑎]𝜁))
59 fvex 6668 . . . . . . . . . . . 12 (𝑓𝑀) ∈ V
60 fdc1.5 . . . . . . . . . . . 12 (𝑎 = (𝑓𝑀) → (𝜁𝜎))
6159, 60sbcie 3762 . . . . . . . . . . 11 ([(𝑓𝑀) / 𝑎]𝜁𝜎)
6258, 61bitr3di 289 . . . . . . . . . 10 ((𝑓𝑀) = 𝑐 → ([𝑐 / 𝑎]𝜁𝜎))
6362biimpcd 252 . . . . . . . . 9 ([𝑐 / 𝑎]𝜁 → ((𝑓𝑀) = 𝑐𝜎))
6463adantl 485 . . . . . . . 8 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ((𝑓𝑀) = 𝑐𝜎))
6564anim1d 613 . . . . . . 7 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (((𝑓𝑀) = 𝑐𝜏) → (𝜎𝜏)))
66 idd 24 . . . . . . 7 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (∀𝑘 ∈ (𝑁...𝑛)𝜒 → ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6757, 65, 663anim123d 1440 . . . . . 6 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → (𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
6867eximdv 1918 . . . . 5 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
6968reximdv 3233 . . . 4 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
7056, 69mpd 15 . . 3 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
715, 70chvarvv 2005 . 2 (((𝜂𝑎𝐴) ∧ 𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
72 fdc1.9 . 2 (𝜂 → ∃𝑎𝐴 𝜁)
7371, 72r19.29a 3249 1 (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538  ∃wex 1781  [wsb 2069   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3442  [wsbc 3722   class class class wbr 5034   Fr wfr 5479  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  1c1 10545   + caddc 10547   − cmin 10877  ℤcz 11989  ℤ≥cuz 12251  ...cfz 12905 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator