Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdc1 Structured version   Visualization version   GIF version

Theorem fdc1 34469
Description: Variant of fdc 34468 with no specified base value. (Contributed by Jeff Madsen, 18-Jun-2010.)
Hypotheses
Ref Expression
fdc1.1 𝐴 ∈ V
fdc1.2 𝑀 ∈ ℤ
fdc1.3 𝑍 = (ℤ𝑀)
fdc1.4 𝑁 = (𝑀 + 1)
fdc1.5 (𝑎 = (𝑓𝑀) → (𝜁𝜎))
fdc1.6 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
fdc1.7 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
fdc1.8 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
fdc1.9 (𝜂 → ∃𝑎𝐴 𝜁)
fdc1.10 (𝜂𝑅 Fr 𝐴)
fdc1.11 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
fdc1.12 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
Assertion
Ref Expression
fdc1 (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑛   𝑅,𝑎,𝑏   𝑀,𝑎,𝑏,𝑓,𝑘,𝑛   𝑍,𝑎,𝑏,𝑛   𝑁,𝑎,𝑏,𝑓,𝑘,𝑛   𝜑,𝑓,𝑘   𝜓,𝑎   𝜒,𝑎,𝑏,𝑛   𝜃,𝑓,𝑛   𝜏,𝑎,𝑏   𝜂,𝑎,𝑏,𝑓,𝑛   𝜁,𝑏,𝑓,𝑛   𝜎,𝑎
Allowed substitution hints:   𝜑(𝑛,𝑎,𝑏)   𝜓(𝑓,𝑘,𝑛,𝑏)   𝜒(𝑓,𝑘)   𝜃(𝑘,𝑎,𝑏)   𝜏(𝑓,𝑘,𝑛)   𝜂(𝑘)   𝜁(𝑘,𝑎)   𝜎(𝑓,𝑘,𝑛,𝑏)   𝐴(𝑘)   𝑅(𝑓,𝑘,𝑛)   𝑍(𝑓,𝑘)

Proof of Theorem fdc1
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2848 . . . . . 6 (𝑐 = 𝑎 → (𝑐𝐴𝑎𝐴))
21anbi2d 619 . . . . 5 (𝑐 = 𝑎 → ((𝜂𝑐𝐴) ↔ (𝜂𝑎𝐴)))
3 sbceq2a 3693 . . . . 5 (𝑐 = 𝑎 → ([𝑐 / 𝑎]𝜁𝜁))
42, 3anbi12d 621 . . . 4 (𝑐 = 𝑎 → (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) ↔ ((𝜂𝑎𝐴) ∧ 𝜁)))
54imbi1d 334 . . 3 (𝑐 = 𝑎 → ((((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) ↔ (((𝜂𝑎𝐴) ∧ 𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))))
6 fdc1.1 . . . . . 6 𝐴 ∈ V
7 fdc1.2 . . . . . 6 𝑀 ∈ ℤ
8 fdc1.3 . . . . . 6 𝑍 = (ℤ𝑀)
9 fdc1.4 . . . . . 6 𝑁 = (𝑀 + 1)
10 sbsbc 3685 . . . . . . 7 ([𝑑 / 𝑎]𝜑[𝑑 / 𝑎]𝜑)
11 nfv 1873 . . . . . . . 8 𝑎𝜓
12 fdc1.6 . . . . . . . 8 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
1311, 12sbhypf 3473 . . . . . . 7 (𝑑 = (𝑓‘(𝑘 − 1)) → ([𝑑 / 𝑎]𝜑𝜓))
1410, 13syl5bbr 277 . . . . . 6 (𝑑 = (𝑓‘(𝑘 − 1)) → ([𝑑 / 𝑎]𝜑𝜓))
15 fdc1.7 . . . . . 6 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
16 sbsbc 3685 . . . . . . 7 ([𝑑 / 𝑎]𝜃[𝑑 / 𝑎]𝜃)
17 nfv 1873 . . . . . . . 8 𝑎𝜏
18 fdc1.8 . . . . . . . 8 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
1917, 18sbhypf 3473 . . . . . . 7 (𝑑 = (𝑓𝑛) → ([𝑑 / 𝑎]𝜃𝜏))
2016, 19syl5bbr 277 . . . . . 6 (𝑑 = (𝑓𝑛) → ([𝑑 / 𝑎]𝜃𝜏))
21 simprl 758 . . . . . 6 ((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) → 𝑐𝐴)
22 fdc1.10 . . . . . . 7 (𝜂𝑅 Fr 𝐴)
2322adantr 473 . . . . . 6 ((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) → 𝑅 Fr 𝐴)
24 nfv 1873 . . . . . . . . 9 𝑎(𝜂𝑑𝐴)
25 nfsbc1v 3701 . . . . . . . . . 10 𝑎[𝑑 / 𝑎]𝜃
26 nfcv 2932 . . . . . . . . . . 11 𝑎𝐴
27 nfsbc1v 3701 . . . . . . . . . . 11 𝑎[𝑑 / 𝑎]𝜑
2826, 27nfrex 3253 . . . . . . . . . 10 𝑎𝑏𝐴 [𝑑 / 𝑎]𝜑
2925, 28nfor 1867 . . . . . . . . 9 𝑎([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑)
3024, 29nfim 1859 . . . . . . . 8 𝑎((𝜂𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
31 eleq1w 2848 . . . . . . . . . 10 (𝑎 = 𝑑 → (𝑎𝐴𝑑𝐴))
3231anbi2d 619 . . . . . . . . 9 (𝑎 = 𝑑 → ((𝜂𝑎𝐴) ↔ (𝜂𝑑𝐴)))
33 sbceq1a 3692 . . . . . . . . . 10 (𝑎 = 𝑑 → (𝜃[𝑑 / 𝑎]𝜃))
34 sbceq1a 3692 . . . . . . . . . . 11 (𝑎 = 𝑑 → (𝜑[𝑑 / 𝑎]𝜑))
3534rexbidv 3242 . . . . . . . . . 10 (𝑎 = 𝑑 → (∃𝑏𝐴 𝜑 ↔ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
3633, 35orbi12d 902 . . . . . . . . 9 (𝑎 = 𝑑 → ((𝜃 ∨ ∃𝑏𝐴 𝜑) ↔ ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑)))
3732, 36imbi12d 337 . . . . . . . 8 (𝑎 = 𝑑 → (((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑)) ↔ ((𝜂𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))))
38 fdc1.11 . . . . . . . 8 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
3930, 37, 38chvar 2326 . . . . . . 7 ((𝜂𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
4039adantlr 702 . . . . . 6 (((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) ∧ 𝑑𝐴) → ([𝑑 / 𝑎]𝜃 ∨ ∃𝑏𝐴 [𝑑 / 𝑎]𝜑))
41 nfv 1873 . . . . . . . . . . 11 𝑎𝜂
4241, 27nfan 1862 . . . . . . . . . 10 𝑎(𝜂[𝑑 / 𝑎]𝜑)
43 nfv 1873 . . . . . . . . . 10 𝑎(𝑑𝐴𝑏𝐴)
4442, 43nfan 1862 . . . . . . . . 9 𝑎((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴))
45 nfv 1873 . . . . . . . . 9 𝑎 𝑏𝑅𝑑
4644, 45nfim 1859 . . . . . . . 8 𝑎(((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)
4734anbi2d 619 . . . . . . . . . 10 (𝑎 = 𝑑 → ((𝜂𝜑) ↔ (𝜂[𝑑 / 𝑎]𝜑)))
4831anbi1d 620 . . . . . . . . . 10 (𝑎 = 𝑑 → ((𝑎𝐴𝑏𝐴) ↔ (𝑑𝐴𝑏𝐴)))
4947, 48anbi12d 621 . . . . . . . . 9 (𝑎 = 𝑑 → (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ↔ ((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴))))
50 breq2 4933 . . . . . . . . 9 (𝑎 = 𝑑 → (𝑏𝑅𝑎𝑏𝑅𝑑))
5149, 50imbi12d 337 . . . . . . . 8 (𝑎 = 𝑑 → ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎) ↔ (((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)))
52 fdc1.12 . . . . . . . 8 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
5346, 51, 52chvar 2326 . . . . . . 7 (((𝜂[𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)
5453adantllr 706 . . . . . 6 ((((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) ∧ [𝑑 / 𝑎]𝜑) ∧ (𝑑𝐴𝑏𝐴)) → 𝑏𝑅𝑑)
556, 7, 8, 9, 14, 15, 20, 21, 23, 40, 54fdc 34468 . . . . 5 ((𝜂 ∧ (𝑐𝐴[𝑐 / 𝑎]𝜁)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
5655anassrs 460 . . . 4 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
57 idd 24 . . . . . . 7 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑛)⟶𝐴))
58 fvex 6512 . . . . . . . . . . . 12 (𝑓𝑀) ∈ V
59 fdc1.5 . . . . . . . . . . . 12 (𝑎 = (𝑓𝑀) → (𝜁𝜎))
6058, 59sbcie 3716 . . . . . . . . . . 11 ([(𝑓𝑀) / 𝑎]𝜁𝜎)
61 dfsbcq 3683 . . . . . . . . . . 11 ((𝑓𝑀) = 𝑐 → ([(𝑓𝑀) / 𝑎]𝜁[𝑐 / 𝑎]𝜁))
6260, 61syl5rbbr 278 . . . . . . . . . 10 ((𝑓𝑀) = 𝑐 → ([𝑐 / 𝑎]𝜁𝜎))
6362biimpcd 241 . . . . . . . . 9 ([𝑐 / 𝑎]𝜁 → ((𝑓𝑀) = 𝑐𝜎))
6463adantl 474 . . . . . . . 8 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ((𝑓𝑀) = 𝑐𝜎))
6564anim1d 601 . . . . . . 7 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (((𝑓𝑀) = 𝑐𝜏) → (𝜎𝜏)))
66 idd 24 . . . . . . 7 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (∀𝑘 ∈ (𝑁...𝑛)𝜒 → ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6757, 65, 663anim123d 1422 . . . . . 6 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → (𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
6867eximdv 1876 . . . . 5 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
6968reximdv 3218 . . . 4 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
7056, 69mpd 15 . . 3 (((𝜂𝑐𝐴) ∧ [𝑐 / 𝑎]𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
715, 70chvarv 2327 . 2 (((𝜂𝑎𝐴) ∧ 𝜁) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
72 fdc1.9 . 2 (𝜂 → ∃𝑎𝐴 𝜁)
7371, 72r19.29a 3234 1 (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ (𝜎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wex 1742  [wsb 2015  wcel 2050  wral 3088  wrex 3089  Vcvv 3415  [wsbc 3681   class class class wbr 4929   Fr wfr 5363  wf 6184  cfv 6188  (class class class)co 6976  1c1 10336   + caddc 10338  cmin 10670  cz 11793  cuz 12058  ...cfz 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator