Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrnmptw | Structured version Visualization version GIF version |
Description: A restricted quantifier over an image set. Version of ralrnmpt 6981 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
ralrnmptw.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
ralrnmptw.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralrnmptw | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrnmptw.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fnmpt 6582 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
3 | dfsbcq 3719 | . . . . 5 ⊢ (𝑤 = (𝐹‘𝑧) → ([𝑤 / 𝑦]𝜓 ↔ [(𝐹‘𝑧) / 𝑦]𝜓)) | |
4 | 3 | ralrn 6973 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
6 | nfsbc1v 3737 | . . . 4 ⊢ Ⅎ𝑦[𝑤 / 𝑦]𝜓 | |
7 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑤𝜓 | |
8 | sbceq2a 3729 | . . . 4 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜓 ↔ 𝜓)) | |
9 | 6, 7, 8 | cbvralw 3374 | . . 3 ⊢ (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓) |
10 | nfmpt1 5183 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
11 | 1, 10 | nfcxfr 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
12 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
13 | 11, 12 | nffv 6793 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
14 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
15 | 13, 14 | nfsbcw 3739 | . . . 4 ⊢ Ⅎ𝑥[(𝐹‘𝑧) / 𝑦]𝜓 |
16 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧[(𝐹‘𝑥) / 𝑦]𝜓 | |
17 | fveq2 6783 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
18 | 17 | sbceq1d 3722 | . . . 4 ⊢ (𝑧 = 𝑥 → ([(𝐹‘𝑧) / 𝑦]𝜓 ↔ [(𝐹‘𝑥) / 𝑦]𝜓)) |
19 | 15, 16, 18 | cbvralw 3374 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓) |
20 | 5, 9, 19 | 3bitr3g 313 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓)) |
21 | 1 | fvmpt2 6895 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝑥) = 𝐵) |
22 | 21 | sbceq1d 3722 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ [𝐵 / 𝑦]𝜓)) |
23 | ralrnmptw.2 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
24 | 23 | sbcieg 3757 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
25 | 24 | adantl 482 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
26 | 22, 25 | bitrd 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
27 | 26 | ralimiaa 3087 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
28 | ralbi 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒) → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | |
29 | 27, 28 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
30 | 20, 29 | bitrd 278 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∀wral 3065 [wsbc 3717 ↦ cmpt 5158 ran crn 5591 Fn wfn 6432 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-fv 6445 |
This theorem is referenced by: rexrnmptw 6980 ac6num 10244 gsumwspan 18494 dfod2 19180 ordtbaslem 22348 ordtrest2lem 22363 cncmp 22552 comppfsc 22692 ptpjopn 22772 ordthmeolem 22961 tsmsfbas 23288 tsmsf1o 23305 prdsxmetlem 23530 prdsbl 23656 metdsf 24020 metdsge 24021 minveclem1 24597 minveclem3b 24601 minveclem6 24607 mbflimsup 24839 xrlimcnp 26127 minvecolem1 29245 minvecolem5 29252 minvecolem6 29253 ordtrest2NEWlem 31881 cvmsss2 33245 fin2so 35773 prdsbnd 35960 rrnequiv 36002 ralrnmpt3 42812 |
Copyright terms: Public domain | W3C validator |