MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrnmptw Structured version   Visualization version   GIF version

Theorem ralrnmptw 6952
Description: A restricted quantifier over an image set. Version of ralrnmpt 6954 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by Gino Giotto, 26-Jan-2024.)
Hypotheses
Ref Expression
ralrnmptw.1 𝐹 = (𝑥𝐴𝐵)
ralrnmptw.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ralrnmptw (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ralrnmptw
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmptw.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21fnmpt 6557 . . . 4 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
3 dfsbcq 3713 . . . . 5 (𝑤 = (𝐹𝑧) → ([𝑤 / 𝑦]𝜓[(𝐹𝑧) / 𝑦]𝜓))
43ralrn 6946 . . . 4 (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
52, 4syl 17 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
6 nfsbc1v 3731 . . . 4 𝑦[𝑤 / 𝑦]𝜓
7 nfv 1918 . . . 4 𝑤𝜓
8 sbceq2a 3723 . . . 4 (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜓𝜓))
96, 7, 8cbvralw 3363 . . 3 (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓)
10 nfmpt1 5178 . . . . . . 7 𝑥(𝑥𝐴𝐵)
111, 10nfcxfr 2904 . . . . . 6 𝑥𝐹
12 nfcv 2906 . . . . . 6 𝑥𝑧
1311, 12nffv 6766 . . . . 5 𝑥(𝐹𝑧)
14 nfv 1918 . . . . 5 𝑥𝜓
1513, 14nfsbcw 3733 . . . 4 𝑥[(𝐹𝑧) / 𝑦]𝜓
16 nfv 1918 . . . 4 𝑧[(𝐹𝑥) / 𝑦]𝜓
17 fveq2 6756 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1817sbceq1d 3716 . . . 4 (𝑧 = 𝑥 → ([(𝐹𝑧) / 𝑦]𝜓[(𝐹𝑥) / 𝑦]𝜓))
1915, 16, 18cbvralw 3363 . . 3 (∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓)
205, 9, 193bitr3g 312 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓))
211fvmpt2 6868 . . . . . 6 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
2221sbceq1d 3716 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓[𝐵 / 𝑦]𝜓))
23 ralrnmptw.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
2423sbcieg 3751 . . . . . 6 (𝐵𝑉 → ([𝐵 / 𝑦]𝜓𝜒))
2524adantl 481 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([𝐵 / 𝑦]𝜓𝜒))
2622, 25bitrd 278 . . . 4 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓𝜒))
2726ralimiaa 3085 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒))
28 ralbi 3092 . . 3 (∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒) → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
2927, 28syl 17 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3020, 29bitrd 278 1 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  [wsbc 3711  cmpt 5153  ran crn 5581   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  rexrnmptw  6953  ac6num  10166  gsumwspan  18400  dfod2  19086  ordtbaslem  22247  ordtrest2lem  22262  cncmp  22451  comppfsc  22591  ptpjopn  22671  ordthmeolem  22860  tsmsfbas  23187  tsmsf1o  23204  prdsxmetlem  23429  prdsbl  23553  metdsf  23917  metdsge  23918  minveclem1  24493  minveclem3b  24497  minveclem6  24503  mbflimsup  24735  xrlimcnp  26023  minvecolem1  29137  minvecolem5  29144  minvecolem6  29145  ordtrest2NEWlem  31774  cvmsss2  33136  fin2so  35691  prdsbnd  35878  rrnequiv  35920  ralrnmpt3  42694
  Copyright terms: Public domain W3C validator