Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrnmptw | Structured version Visualization version GIF version |
Description: A restricted quantifier over an image set. Version of ralrnmpt 6954 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
ralrnmptw.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
ralrnmptw.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralrnmptw | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrnmptw.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fnmpt 6557 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
3 | dfsbcq 3713 | . . . . 5 ⊢ (𝑤 = (𝐹‘𝑧) → ([𝑤 / 𝑦]𝜓 ↔ [(𝐹‘𝑧) / 𝑦]𝜓)) | |
4 | 3 | ralrn 6946 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
6 | nfsbc1v 3731 | . . . 4 ⊢ Ⅎ𝑦[𝑤 / 𝑦]𝜓 | |
7 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑤𝜓 | |
8 | sbceq2a 3723 | . . . 4 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜓 ↔ 𝜓)) | |
9 | 6, 7, 8 | cbvralw 3363 | . . 3 ⊢ (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓) |
10 | nfmpt1 5178 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
11 | 1, 10 | nfcxfr 2904 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
12 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
13 | 11, 12 | nffv 6766 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
14 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
15 | 13, 14 | nfsbcw 3733 | . . . 4 ⊢ Ⅎ𝑥[(𝐹‘𝑧) / 𝑦]𝜓 |
16 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧[(𝐹‘𝑥) / 𝑦]𝜓 | |
17 | fveq2 6756 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
18 | 17 | sbceq1d 3716 | . . . 4 ⊢ (𝑧 = 𝑥 → ([(𝐹‘𝑧) / 𝑦]𝜓 ↔ [(𝐹‘𝑥) / 𝑦]𝜓)) |
19 | 15, 16, 18 | cbvralw 3363 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓) |
20 | 5, 9, 19 | 3bitr3g 312 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓)) |
21 | 1 | fvmpt2 6868 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝑥) = 𝐵) |
22 | 21 | sbceq1d 3716 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ [𝐵 / 𝑦]𝜓)) |
23 | ralrnmptw.2 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
24 | 23 | sbcieg 3751 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
25 | 24 | adantl 481 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
26 | 22, 25 | bitrd 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
27 | 26 | ralimiaa 3085 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
28 | ralbi 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒) → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | |
29 | 27, 28 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
30 | 20, 29 | bitrd 278 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 [wsbc 3711 ↦ cmpt 5153 ran crn 5581 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: rexrnmptw 6953 ac6num 10166 gsumwspan 18400 dfod2 19086 ordtbaslem 22247 ordtrest2lem 22262 cncmp 22451 comppfsc 22591 ptpjopn 22671 ordthmeolem 22860 tsmsfbas 23187 tsmsf1o 23204 prdsxmetlem 23429 prdsbl 23553 metdsf 23917 metdsge 23918 minveclem1 24493 minveclem3b 24497 minveclem6 24503 mbflimsup 24735 xrlimcnp 26023 minvecolem1 29137 minvecolem5 29144 minvecolem6 29145 ordtrest2NEWlem 31774 cvmsss2 33136 fin2so 35691 prdsbnd 35878 rrnequiv 35920 ralrnmpt3 42694 |
Copyright terms: Public domain | W3C validator |