| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrnmptw | Structured version Visualization version GIF version | ||
| Description: A restricted quantifier over an image set. Version of ralrnmpt 7068 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2370. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| ralrnmptw.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| ralrnmptw.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralrnmptw | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrnmptw.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fnmpt 6658 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| 3 | dfsbcq 3755 | . . . . 5 ⊢ (𝑤 = (𝐹‘𝑧) → ([𝑤 / 𝑦]𝜓 ↔ [(𝐹‘𝑧) / 𝑦]𝜓)) | |
| 4 | 3 | ralrn 7060 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
| 6 | nfsbc1v 3773 | . . . 4 ⊢ Ⅎ𝑦[𝑤 / 𝑦]𝜓 | |
| 7 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤𝜓 | |
| 8 | sbceq2a 3765 | . . . 4 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜓 ↔ 𝜓)) | |
| 9 | 6, 7, 8 | cbvralw 3280 | . . 3 ⊢ (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓) |
| 10 | nfmpt1 5206 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 11 | 1, 10 | nfcxfr 2889 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
| 12 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
| 13 | 11, 12 | nffv 6868 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 14 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 15 | 13, 14 | nfsbcw 3775 | . . . 4 ⊢ Ⅎ𝑥[(𝐹‘𝑧) / 𝑦]𝜓 |
| 16 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧[(𝐹‘𝑥) / 𝑦]𝜓 | |
| 17 | fveq2 6858 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 18 | 17 | sbceq1d 3758 | . . . 4 ⊢ (𝑧 = 𝑥 → ([(𝐹‘𝑧) / 𝑦]𝜓 ↔ [(𝐹‘𝑥) / 𝑦]𝜓)) |
| 19 | 15, 16, 18 | cbvralw 3280 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓) |
| 20 | 5, 9, 19 | 3bitr3g 313 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓)) |
| 21 | 1 | fvmpt2 6979 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝑥) = 𝐵) |
| 22 | 21 | sbceq1d 3758 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ [𝐵 / 𝑦]𝜓)) |
| 23 | ralrnmptw.2 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 24 | 23 | sbcieg 3793 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 25 | 24 | adantl 481 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 26 | 22, 25 | bitrd 279 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
| 27 | 26 | ralimiaa 3065 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
| 28 | ralbi 3085 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒) → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | |
| 29 | 27, 28 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| 30 | 20, 29 | bitrd 279 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 [wsbc 3753 ↦ cmpt 5188 ran crn 5639 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: rexrnmptw 7067 ac6num 10432 gsumwspan 18773 dfod2 19494 ordtbaslem 23075 ordtrest2lem 23090 cncmp 23279 comppfsc 23419 ptpjopn 23499 ordthmeolem 23688 tsmsfbas 24015 tsmsf1o 24032 prdsxmetlem 24256 prdsbl 24379 metdsf 24737 metdsge 24738 minveclem1 25324 minveclem3b 25328 minveclem6 25334 mbflimsup 25567 xrlimcnp 26878 minvecolem1 30803 minvecolem5 30810 minvecolem6 30811 ordtrest2NEWlem 33912 cvmsss2 35261 fin2so 37601 prdsbnd 37787 rrnequiv 37829 ralrnmpt3 45253 |
| Copyright terms: Public domain | W3C validator |