MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrnmptw Structured version   Visualization version   GIF version

Theorem ralrnmptw 7028
Description: A restricted quantifier over an image set. Version of ralrnmpt 7030 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2370. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
ralrnmptw.1 𝐹 = (𝑥𝐴𝐵)
ralrnmptw.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ralrnmptw (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ralrnmptw
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmptw.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21fnmpt 6622 . . . 4 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
3 dfsbcq 3744 . . . . 5 (𝑤 = (𝐹𝑧) → ([𝑤 / 𝑦]𝜓[(𝐹𝑧) / 𝑦]𝜓))
43ralrn 7022 . . . 4 (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
52, 4syl 17 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
6 nfsbc1v 3762 . . . 4 𝑦[𝑤 / 𝑦]𝜓
7 nfv 1914 . . . 4 𝑤𝜓
8 sbceq2a 3754 . . . 4 (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜓𝜓))
96, 7, 8cbvralw 3271 . . 3 (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓)
10 nfmpt1 5191 . . . . . . 7 𝑥(𝑥𝐴𝐵)
111, 10nfcxfr 2889 . . . . . 6 𝑥𝐹
12 nfcv 2891 . . . . . 6 𝑥𝑧
1311, 12nffv 6832 . . . . 5 𝑥(𝐹𝑧)
14 nfv 1914 . . . . 5 𝑥𝜓
1513, 14nfsbcw 3764 . . . 4 𝑥[(𝐹𝑧) / 𝑦]𝜓
16 nfv 1914 . . . 4 𝑧[(𝐹𝑥) / 𝑦]𝜓
17 fveq2 6822 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1817sbceq1d 3747 . . . 4 (𝑧 = 𝑥 → ([(𝐹𝑧) / 𝑦]𝜓[(𝐹𝑥) / 𝑦]𝜓))
1915, 16, 18cbvralw 3271 . . 3 (∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓)
205, 9, 193bitr3g 313 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓))
211fvmpt2 6941 . . . . . 6 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
2221sbceq1d 3747 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓[𝐵 / 𝑦]𝜓))
23 ralrnmptw.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
2423sbcieg 3782 . . . . . 6 (𝐵𝑉 → ([𝐵 / 𝑦]𝜓𝜒))
2524adantl 481 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([𝐵 / 𝑦]𝜓𝜒))
2622, 25bitrd 279 . . . 4 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓𝜒))
2726ralimiaa 3065 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒))
28 ralbi 3084 . . 3 (∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒) → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
2927, 28syl 17 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3020, 29bitrd 279 1 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  [wsbc 3742  cmpt 5173  ran crn 5620   Fn wfn 6477  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by:  rexrnmptw  7029  ac6num  10373  gsumwspan  18720  dfod2  19443  ordtbaslem  23073  ordtrest2lem  23088  cncmp  23277  comppfsc  23417  ptpjopn  23497  ordthmeolem  23686  tsmsfbas  24013  tsmsf1o  24030  prdsxmetlem  24254  prdsbl  24377  metdsf  24735  metdsge  24736  minveclem1  25322  minveclem3b  25326  minveclem6  25332  mbflimsup  25565  xrlimcnp  26876  minvecolem1  30822  minvecolem5  30829  minvecolem6  30830  ordtrest2NEWlem  33905  cvmsss2  35267  fin2so  37607  prdsbnd  37793  rrnequiv  37835  ralrnmpt3  45257
  Copyright terms: Public domain W3C validator