MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrnmptw Structured version   Visualization version   GIF version

Theorem ralrnmptw 7092
Description: A restricted quantifier over an image set. Version of ralrnmpt 7094 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2371. (Revised by Gino Giotto, 26-Jan-2024.)
Hypotheses
Ref Expression
ralrnmptw.1 𝐹 = (𝑥𝐴𝐵)
ralrnmptw.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ralrnmptw (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ralrnmptw
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmptw.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21fnmpt 6687 . . . 4 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
3 dfsbcq 3778 . . . . 5 (𝑤 = (𝐹𝑧) → ([𝑤 / 𝑦]𝜓[(𝐹𝑧) / 𝑦]𝜓))
43ralrn 7086 . . . 4 (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
52, 4syl 17 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓))
6 nfsbc1v 3796 . . . 4 𝑦[𝑤 / 𝑦]𝜓
7 nfv 1917 . . . 4 𝑤𝜓
8 sbceq2a 3788 . . . 4 (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜓𝜓))
96, 7, 8cbvralw 3303 . . 3 (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓)
10 nfmpt1 5255 . . . . . . 7 𝑥(𝑥𝐴𝐵)
111, 10nfcxfr 2901 . . . . . 6 𝑥𝐹
12 nfcv 2903 . . . . . 6 𝑥𝑧
1311, 12nffv 6898 . . . . 5 𝑥(𝐹𝑧)
14 nfv 1917 . . . . 5 𝑥𝜓
1513, 14nfsbcw 3798 . . . 4 𝑥[(𝐹𝑧) / 𝑦]𝜓
16 nfv 1917 . . . 4 𝑧[(𝐹𝑥) / 𝑦]𝜓
17 fveq2 6888 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1817sbceq1d 3781 . . . 4 (𝑧 = 𝑥 → ([(𝐹𝑧) / 𝑦]𝜓[(𝐹𝑥) / 𝑦]𝜓))
1915, 16, 18cbvralw 3303 . . 3 (∀𝑧𝐴 [(𝐹𝑧) / 𝑦]𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓)
205, 9, 193bitr3g 312 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓))
211fvmpt2 7006 . . . . . 6 ((𝑥𝐴𝐵𝑉) → (𝐹𝑥) = 𝐵)
2221sbceq1d 3781 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓[𝐵 / 𝑦]𝜓))
23 ralrnmptw.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
2423sbcieg 3816 . . . . . 6 (𝐵𝑉 → ([𝐵 / 𝑦]𝜓𝜒))
2524adantl 482 . . . . 5 ((𝑥𝐴𝐵𝑉) → ([𝐵 / 𝑦]𝜓𝜒))
2622, 25bitrd 278 . . . 4 ((𝑥𝐴𝐵𝑉) → ([(𝐹𝑥) / 𝑦]𝜓𝜒))
2726ralimiaa 3082 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒))
28 ralbi 3103 . . 3 (∀𝑥𝐴 ([(𝐹𝑥) / 𝑦]𝜓𝜒) → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
2927, 28syl 17 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑥𝐴 [(𝐹𝑥) / 𝑦]𝜓 ↔ ∀𝑥𝐴 𝜒))
3020, 29bitrd 278 1 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  [wsbc 3776  cmpt 5230  ran crn 5676   Fn wfn 6535  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-fv 6548
This theorem is referenced by:  rexrnmptw  7093  ac6num  10470  gsumwspan  18723  dfod2  19426  ordtbaslem  22683  ordtrest2lem  22698  cncmp  22887  comppfsc  23027  ptpjopn  23107  ordthmeolem  23296  tsmsfbas  23623  tsmsf1o  23640  prdsxmetlem  23865  prdsbl  23991  metdsf  24355  metdsge  24356  minveclem1  24932  minveclem3b  24936  minveclem6  24942  mbflimsup  25174  xrlimcnp  26462  minvecolem1  30114  minvecolem5  30121  minvecolem6  30122  ordtrest2NEWlem  32890  cvmsss2  34253  fin2so  36463  prdsbnd  36649  rrnequiv  36691  ralrnmpt3  43949
  Copyright terms: Public domain W3C validator