![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrnmptw | Structured version Visualization version GIF version |
Description: A restricted quantifier over an image set. Version of ralrnmpt 7130 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2380. (Revised by GG, 26-Jan-2024.) |
Ref | Expression |
---|---|
ralrnmptw.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
ralrnmptw.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralrnmptw | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrnmptw.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fnmpt 6720 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
3 | dfsbcq 3806 | . . . . 5 ⊢ (𝑤 = (𝐹‘𝑧) → ([𝑤 / 𝑦]𝜓 ↔ [(𝐹‘𝑧) / 𝑦]𝜓)) | |
4 | 3 | ralrn 7122 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
6 | nfsbc1v 3824 | . . . 4 ⊢ Ⅎ𝑦[𝑤 / 𝑦]𝜓 | |
7 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑤𝜓 | |
8 | sbceq2a 3816 | . . . 4 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜓 ↔ 𝜓)) | |
9 | 6, 7, 8 | cbvralw 3312 | . . 3 ⊢ (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓) |
10 | nfmpt1 5274 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
11 | 1, 10 | nfcxfr 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
12 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
13 | 11, 12 | nffv 6930 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
14 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
15 | 13, 14 | nfsbcw 3826 | . . . 4 ⊢ Ⅎ𝑥[(𝐹‘𝑧) / 𝑦]𝜓 |
16 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑧[(𝐹‘𝑥) / 𝑦]𝜓 | |
17 | fveq2 6920 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
18 | 17 | sbceq1d 3809 | . . . 4 ⊢ (𝑧 = 𝑥 → ([(𝐹‘𝑧) / 𝑦]𝜓 ↔ [(𝐹‘𝑥) / 𝑦]𝜓)) |
19 | 15, 16, 18 | cbvralw 3312 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓) |
20 | 5, 9, 19 | 3bitr3g 313 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓)) |
21 | 1 | fvmpt2 7040 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝑥) = 𝐵) |
22 | 21 | sbceq1d 3809 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ [𝐵 / 𝑦]𝜓)) |
23 | ralrnmptw.2 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
24 | 23 | sbcieg 3845 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
25 | 24 | adantl 481 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
26 | 22, 25 | bitrd 279 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
27 | 26 | ralimiaa 3088 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
28 | ralbi 3109 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒) → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | |
29 | 27, 28 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
30 | 20, 29 | bitrd 279 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 [wsbc 3804 ↦ cmpt 5249 ran crn 5701 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: rexrnmptw 7129 ac6num 10548 gsumwspan 18881 dfod2 19606 ordtbaslem 23217 ordtrest2lem 23232 cncmp 23421 comppfsc 23561 ptpjopn 23641 ordthmeolem 23830 tsmsfbas 24157 tsmsf1o 24174 prdsxmetlem 24399 prdsbl 24525 metdsf 24889 metdsge 24890 minveclem1 25477 minveclem3b 25481 minveclem6 25487 mbflimsup 25720 xrlimcnp 27029 minvecolem1 30906 minvecolem5 30913 minvecolem6 30914 ordtrest2NEWlem 33868 cvmsss2 35242 fin2so 37567 prdsbnd 37753 rrnequiv 37795 ralrnmpt3 45168 |
Copyright terms: Public domain | W3C validator |