Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexa Structured version   Visualization version   GIF version

Theorem indexa 35012
Description: If for every element of an indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexa ((𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑐   𝑥,𝐵,𝑦,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑐)

Proof of Theorem indexa
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 5237 . 2 (𝐵𝑀 → {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V)
2 ssrab2 4059 . . . 4 {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵
32a1i 11 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵)
4 nfv 1914 . . . . 5 𝑦 𝑥𝐴
5 nfre1 3309 . . . . 5 𝑦𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑
6 sbceq2a 3787 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → ([𝑤 / 𝑥]𝜑𝜑))
76rspcev 3626 . . . . . . . . . . . . 13 ((𝑥𝐴𝜑) → ∃𝑤𝐴 [𝑤 / 𝑥]𝜑)
87ancoms 461 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∃𝑤𝐴 [𝑤 / 𝑥]𝜑)
98anim1ci 617 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
109anasss 469 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1110ancoms 461 . . . . . . . . 9 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
12 sbceq2a 3787 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝜑𝜑))
1312sbcbidv 3830 . . . . . . . . . . 11 (𝑧 = 𝑦 → ([𝑤 / 𝑥][𝑧 / 𝑦]𝜑[𝑤 / 𝑥]𝜑))
1413rexbidv 3300 . . . . . . . . . 10 (𝑧 = 𝑦 → (∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1514elrab 3683 . . . . . . . . 9 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ↔ (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1611, 15sylibr 236 . . . . . . . 8 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → 𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑})
17 sbceq2a 3787 . . . . . . . . 9 (𝑣 = 𝑦 → ([𝑣 / 𝑦]𝜑𝜑))
1817rspcev 3626 . . . . . . . 8 ((𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∧ 𝜑) → ∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑)
1916, 18sylancom 590 . . . . . . 7 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → ∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑)
20 nfcv 2980 . . . . . . . 8 𝑣{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
21 nfcv 2980 . . . . . . . . . 10 𝑦𝐴
22 nfcv 2980 . . . . . . . . . . 11 𝑦𝑤
23 nfsbc1v 3795 . . . . . . . . . . 11 𝑦[𝑧 / 𝑦]𝜑
2422, 23nfsbcw 3797 . . . . . . . . . 10 𝑦[𝑤 / 𝑥][𝑧 / 𝑦]𝜑
2521, 24nfrex 3312 . . . . . . . . 9 𝑦𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑
26 nfcv 2980 . . . . . . . . 9 𝑦𝐵
2725, 26nfrabw 3388 . . . . . . . 8 𝑦{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
28 nfsbc1v 3795 . . . . . . . 8 𝑦[𝑣 / 𝑦]𝜑
29 nfv 1914 . . . . . . . 8 𝑣𝜑
3020, 27, 28, 29, 17cbvrexfw 3441 . . . . . . 7 (∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑 ↔ ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
3119, 30sylib 220 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
3231exp31 422 . . . . 5 (𝑥𝐴 → (𝑦𝐵 → (𝜑 → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)))
334, 5, 32rexlimd 3320 . . . 4 (𝑥𝐴 → (∃𝑦𝐵 𝜑 → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
3433ralimia 3161 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
35 nfsbc1v 3795 . . . . . . . . 9 𝑥[𝑤 / 𝑥]𝜑
36 nfv 1914 . . . . . . . . 9 𝑤𝜑
3735, 36, 6cbvrexw 3445 . . . . . . . 8 (∃𝑤𝐴 [𝑤 / 𝑥]𝜑 ↔ ∃𝑥𝐴 𝜑)
3814, 37syl6bb 289 . . . . . . 7 (𝑧 = 𝑦 → (∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∃𝑥𝐴 𝜑))
3938elrab 3683 . . . . . 6 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
4039simprbi 499 . . . . 5 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → ∃𝑥𝐴 𝜑)
4140rgen 3151 . . . 4 𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑
4241a1i 11 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)
433, 34, 423jca 1124 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑))
44 sseq1 3995 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (𝑐𝐵 ↔ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵))
45 nfcv 2980 . . . . . . . . 9 𝑥𝐴
46 nfsbc1v 3795 . . . . . . . . 9 𝑥[𝑤 / 𝑥][𝑧 / 𝑦]𝜑
4745, 46nfrex 3312 . . . . . . . 8 𝑥𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑
48 nfcv 2980 . . . . . . . 8 𝑥𝐵
4947, 48nfrabw 3388 . . . . . . 7 𝑥{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
5049nfeq2 2998 . . . . . 6 𝑥 𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
51 nfcv 2980 . . . . . . 7 𝑦𝑐
5251, 27rexeqf 3401 . . . . . 6 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∃𝑦𝑐 𝜑 ↔ ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
5350, 52ralbid 3234 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∀𝑥𝐴𝑦𝑐 𝜑 ↔ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
5451, 27raleqf 3400 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∀𝑦𝑐𝑥𝐴 𝜑 ↔ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑))
5544, 53, 543anbi123d 1432 . . . 4 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → ((𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑) ↔ ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)))
5655spcegv 3600 . . 3 ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V → (({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
5756imp 409 . 2 (({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V ∧ ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
581, 43, 57syl2an 597 1 ((𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  wral 3141  wrex 3142  {crab 3145  Vcvv 3497  [wsbc 3775  wss 3939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-in 3946  df-ss 3955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator