Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexa Structured version   Visualization version   GIF version

Theorem indexa 36904
Description: If for every element of an indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexa ((𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑐   𝑥,𝐵,𝑦,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑐)

Proof of Theorem indexa
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 5330 . 2 (𝐵𝑀 → {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V)
2 ssrab2 4076 . . . 4 {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵
32a1i 11 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵)
4 nfv 1915 . . . . 5 𝑦 𝑥𝐴
5 nfre1 3280 . . . . 5 𝑦𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑
6 sbceq2a 3788 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → ([𝑤 / 𝑥]𝜑𝜑))
76rspcev 3611 . . . . . . . . . . . . 13 ((𝑥𝐴𝜑) → ∃𝑤𝐴 [𝑤 / 𝑥]𝜑)
87ancoms 457 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∃𝑤𝐴 [𝑤 / 𝑥]𝜑)
98anim1ci 614 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
109anasss 465 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1110ancoms 457 . . . . . . . . 9 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
12 sbceq2a 3788 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝜑𝜑))
1312sbcbidv 3835 . . . . . . . . . . 11 (𝑧 = 𝑦 → ([𝑤 / 𝑥][𝑧 / 𝑦]𝜑[𝑤 / 𝑥]𝜑))
1413rexbidv 3176 . . . . . . . . . 10 (𝑧 = 𝑦 → (∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1514elrab 3682 . . . . . . . . 9 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ↔ (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1611, 15sylibr 233 . . . . . . . 8 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → 𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑})
17 sbceq2a 3788 . . . . . . . . 9 (𝑣 = 𝑦 → ([𝑣 / 𝑦]𝜑𝜑))
1817rspcev 3611 . . . . . . . 8 ((𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∧ 𝜑) → ∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑)
1916, 18sylancom 586 . . . . . . 7 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → ∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑)
20 nfcv 2901 . . . . . . . 8 𝑣{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
21 nfcv 2901 . . . . . . . . . 10 𝑦𝐴
22 nfcv 2901 . . . . . . . . . . 11 𝑦𝑤
23 nfsbc1v 3796 . . . . . . . . . . 11 𝑦[𝑧 / 𝑦]𝜑
2422, 23nfsbcw 3798 . . . . . . . . . 10 𝑦[𝑤 / 𝑥][𝑧 / 𝑦]𝜑
2521, 24nfrexw 3308 . . . . . . . . 9 𝑦𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑
26 nfcv 2901 . . . . . . . . 9 𝑦𝐵
2725, 26nfrabw 3466 . . . . . . . 8 𝑦{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
28 nfsbc1v 3796 . . . . . . . 8 𝑦[𝑣 / 𝑦]𝜑
29 nfv 1915 . . . . . . . 8 𝑣𝜑
3020, 27, 28, 29, 17cbvrexfw 3300 . . . . . . 7 (∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑 ↔ ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
3119, 30sylib 217 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
3231exp31 418 . . . . 5 (𝑥𝐴 → (𝑦𝐵 → (𝜑 → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)))
334, 5, 32rexlimd 3261 . . . 4 (𝑥𝐴 → (∃𝑦𝐵 𝜑 → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
3433ralimia 3078 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
35 nfsbc1v 3796 . . . . . . . . 9 𝑥[𝑤 / 𝑥]𝜑
36 nfv 1915 . . . . . . . . 9 𝑤𝜑
3735, 36, 6cbvrexw 3302 . . . . . . . 8 (∃𝑤𝐴 [𝑤 / 𝑥]𝜑 ↔ ∃𝑥𝐴 𝜑)
3814, 37bitrdi 286 . . . . . . 7 (𝑧 = 𝑦 → (∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∃𝑥𝐴 𝜑))
3938elrab 3682 . . . . . 6 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
4039simprbi 495 . . . . 5 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → ∃𝑥𝐴 𝜑)
4140rgen 3061 . . . 4 𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑
4241a1i 11 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)
433, 34, 423jca 1126 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑))
44 sseq1 4006 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (𝑐𝐵 ↔ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵))
45 nfcv 2901 . . . . . . . . 9 𝑥𝐴
46 nfsbc1v 3796 . . . . . . . . 9 𝑥[𝑤 / 𝑥][𝑧 / 𝑦]𝜑
4745, 46nfrexw 3308 . . . . . . . 8 𝑥𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑
48 nfcv 2901 . . . . . . . 8 𝑥𝐵
4947, 48nfrabw 3466 . . . . . . 7 𝑥{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
5049nfeq2 2918 . . . . . 6 𝑥 𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
51 nfcv 2901 . . . . . . 7 𝑦𝑐
5251, 27rexeqf 3348 . . . . . 6 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∃𝑦𝑐 𝜑 ↔ ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
5350, 52ralbid 3268 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∀𝑥𝐴𝑦𝑐 𝜑 ↔ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
5451, 27raleqf 3347 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∀𝑦𝑐𝑥𝐴 𝜑 ↔ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑))
5544, 53, 543anbi123d 1434 . . . 4 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → ((𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑) ↔ ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)))
5655spcegv 3586 . . 3 ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V → (({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
5756imp 405 . 2 (({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V ∧ ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
581, 43, 57syl2an 594 1 ((𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wex 1779  wcel 2104  wral 3059  wrex 3068  {crab 3430  Vcvv 3472  [wsbc 3776  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-in 3954  df-ss 3964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator