Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexa Structured version   Visualization version   GIF version

Theorem indexa 37740
Description: If for every element of an indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexa ((𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑐   𝑥,𝐵,𝑦,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑐)

Proof of Theorem indexa
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 5337 . 2 (𝐵𝑀 → {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V)
2 ssrab2 4080 . . . 4 {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵
32a1i 11 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵)
4 nfv 1914 . . . . 5 𝑦 𝑥𝐴
5 nfre1 3285 . . . . 5 𝑦𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑
6 sbceq2a 3800 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → ([𝑤 / 𝑥]𝜑𝜑))
76rspcev 3622 . . . . . . . . . . . . 13 ((𝑥𝐴𝜑) → ∃𝑤𝐴 [𝑤 / 𝑥]𝜑)
87ancoms 458 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∃𝑤𝐴 [𝑤 / 𝑥]𝜑)
98anim1ci 616 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
109anasss 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1110ancoms 458 . . . . . . . . 9 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
12 sbceq2a 3800 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝜑𝜑))
1312sbcbidv 3845 . . . . . . . . . . 11 (𝑧 = 𝑦 → ([𝑤 / 𝑥][𝑧 / 𝑦]𝜑[𝑤 / 𝑥]𝜑))
1413rexbidv 3179 . . . . . . . . . 10 (𝑧 = 𝑦 → (∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1514elrab 3692 . . . . . . . . 9 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ↔ (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1611, 15sylibr 234 . . . . . . . 8 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → 𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑})
17 sbceq2a 3800 . . . . . . . . 9 (𝑣 = 𝑦 → ([𝑣 / 𝑦]𝜑𝜑))
1817rspcev 3622 . . . . . . . 8 ((𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∧ 𝜑) → ∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑)
1916, 18sylancom 588 . . . . . . 7 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → ∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑)
20 nfcv 2905 . . . . . . . 8 𝑣{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
21 nfcv 2905 . . . . . . . . . 10 𝑦𝐴
22 nfcv 2905 . . . . . . . . . . 11 𝑦𝑤
23 nfsbc1v 3808 . . . . . . . . . . 11 𝑦[𝑧 / 𝑦]𝜑
2422, 23nfsbcw 3810 . . . . . . . . . 10 𝑦[𝑤 / 𝑥][𝑧 / 𝑦]𝜑
2521, 24nfrexw 3313 . . . . . . . . 9 𝑦𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑
26 nfcv 2905 . . . . . . . . 9 𝑦𝐵
2725, 26nfrabw 3475 . . . . . . . 8 𝑦{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
28 nfsbc1v 3808 . . . . . . . 8 𝑦[𝑣 / 𝑦]𝜑
29 nfv 1914 . . . . . . . 8 𝑣𝜑
3020, 27, 28, 29, 17cbvrexfw 3305 . . . . . . 7 (∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑 ↔ ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
3119, 30sylib 218 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
3231exp31 419 . . . . 5 (𝑥𝐴 → (𝑦𝐵 → (𝜑 → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)))
334, 5, 32rexlimd 3266 . . . 4 (𝑥𝐴 → (∃𝑦𝐵 𝜑 → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
3433ralimia 3080 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
35 nfsbc1v 3808 . . . . . . . . 9 𝑥[𝑤 / 𝑥]𝜑
36 nfv 1914 . . . . . . . . 9 𝑤𝜑
3735, 36, 6cbvrexw 3307 . . . . . . . 8 (∃𝑤𝐴 [𝑤 / 𝑥]𝜑 ↔ ∃𝑥𝐴 𝜑)
3814, 37bitrdi 287 . . . . . . 7 (𝑧 = 𝑦 → (∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∃𝑥𝐴 𝜑))
3938elrab 3692 . . . . . 6 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
4039simprbi 496 . . . . 5 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → ∃𝑥𝐴 𝜑)
4140rgen 3063 . . . 4 𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑
4241a1i 11 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)
433, 34, 423jca 1129 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑))
44 sseq1 4009 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (𝑐𝐵 ↔ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵))
45 nfcv 2905 . . . . . . . . 9 𝑥𝐴
46 nfsbc1v 3808 . . . . . . . . 9 𝑥[𝑤 / 𝑥][𝑧 / 𝑦]𝜑
4745, 46nfrexw 3313 . . . . . . . 8 𝑥𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑
48 nfcv 2905 . . . . . . . 8 𝑥𝐵
4947, 48nfrabw 3475 . . . . . . 7 𝑥{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
5049nfeq2 2923 . . . . . 6 𝑥 𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
51 nfcv 2905 . . . . . . 7 𝑦𝑐
5251, 27rexeqf 3354 . . . . . 6 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∃𝑦𝑐 𝜑 ↔ ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
5350, 52ralbid 3273 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∀𝑥𝐴𝑦𝑐 𝜑 ↔ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
5451, 27raleqf 3353 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∀𝑦𝑐𝑥𝐴 𝜑 ↔ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑))
5544, 53, 543anbi123d 1438 . . . 4 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → ((𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑) ↔ ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)))
5655spcegv 3597 . . 3 ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V → (({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
5756imp 406 . 2 (({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V ∧ ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
581, 43, 57syl2an 596 1 ((𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  [wsbc 3788  wss 3951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-in 3958  df-ss 3968  df-pw 4602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator