Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexa Structured version   Visualization version   GIF version

Theorem indexa 37727
Description: If for every element of an indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexa ((𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑐   𝑥,𝐵,𝑦,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑐)

Proof of Theorem indexa
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 5292 . 2 (𝐵𝑀 → {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V)
2 ssrab2 4043 . . . 4 {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵
32a1i 11 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵)
4 nfv 1914 . . . . 5 𝑦 𝑥𝐴
5 nfre1 3262 . . . . 5 𝑦𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑
6 sbceq2a 3765 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → ([𝑤 / 𝑥]𝜑𝜑))
76rspcev 3588 . . . . . . . . . . . . 13 ((𝑥𝐴𝜑) → ∃𝑤𝐴 [𝑤 / 𝑥]𝜑)
87ancoms 458 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∃𝑤𝐴 [𝑤 / 𝑥]𝜑)
98anim1ci 616 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
109anasss 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1110ancoms 458 . . . . . . . . 9 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
12 sbceq2a 3765 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝜑𝜑))
1312sbcbidv 3809 . . . . . . . . . . 11 (𝑧 = 𝑦 → ([𝑤 / 𝑥][𝑧 / 𝑦]𝜑[𝑤 / 𝑥]𝜑))
1413rexbidv 3157 . . . . . . . . . 10 (𝑧 = 𝑦 → (∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1514elrab 3659 . . . . . . . . 9 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ↔ (𝑦𝐵 ∧ ∃𝑤𝐴 [𝑤 / 𝑥]𝜑))
1611, 15sylibr 234 . . . . . . . 8 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → 𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑})
17 sbceq2a 3765 . . . . . . . . 9 (𝑣 = 𝑦 → ([𝑣 / 𝑦]𝜑𝜑))
1817rspcev 3588 . . . . . . . 8 ((𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∧ 𝜑) → ∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑)
1916, 18sylancom 588 . . . . . . 7 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → ∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑)
20 nfcv 2891 . . . . . . . 8 𝑣{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
21 nfcv 2891 . . . . . . . . . 10 𝑦𝐴
22 nfcv 2891 . . . . . . . . . . 11 𝑦𝑤
23 nfsbc1v 3773 . . . . . . . . . . 11 𝑦[𝑧 / 𝑦]𝜑
2422, 23nfsbcw 3775 . . . . . . . . . 10 𝑦[𝑤 / 𝑥][𝑧 / 𝑦]𝜑
2521, 24nfrexw 3287 . . . . . . . . 9 𝑦𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑
26 nfcv 2891 . . . . . . . . 9 𝑦𝐵
2725, 26nfrabw 3443 . . . . . . . 8 𝑦{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
28 nfsbc1v 3773 . . . . . . . 8 𝑦[𝑣 / 𝑦]𝜑
29 nfv 1914 . . . . . . . 8 𝑣𝜑
3020, 27, 28, 29, 17cbvrexfw 3279 . . . . . . 7 (∃𝑣 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}[𝑣 / 𝑦]𝜑 ↔ ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
3119, 30sylib 218 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
3231exp31 419 . . . . 5 (𝑥𝐴 → (𝑦𝐵 → (𝜑 → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)))
334, 5, 32rexlimd 3244 . . . 4 (𝑥𝐴 → (∃𝑦𝐵 𝜑 → ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
3433ralimia 3063 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑)
35 nfsbc1v 3773 . . . . . . . . 9 𝑥[𝑤 / 𝑥]𝜑
36 nfv 1914 . . . . . . . . 9 𝑤𝜑
3735, 36, 6cbvrexw 3281 . . . . . . . 8 (∃𝑤𝐴 [𝑤 / 𝑥]𝜑 ↔ ∃𝑥𝐴 𝜑)
3814, 37bitrdi 287 . . . . . . 7 (𝑧 = 𝑦 → (∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∃𝑥𝐴 𝜑))
3938elrab 3659 . . . . . 6 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
4039simprbi 496 . . . . 5 (𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → ∃𝑥𝐴 𝜑)
4140rgen 3046 . . . 4 𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑
4241a1i 11 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)
433, 34, 423jca 1128 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑))
44 sseq1 3972 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (𝑐𝐵 ↔ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵))
45 nfcv 2891 . . . . . . . . 9 𝑥𝐴
46 nfsbc1v 3773 . . . . . . . . 9 𝑥[𝑤 / 𝑥][𝑧 / 𝑦]𝜑
4745, 46nfrexw 3287 . . . . . . . 8 𝑥𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑
48 nfcv 2891 . . . . . . . 8 𝑥𝐵
4947, 48nfrabw 3443 . . . . . . 7 𝑥{𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
5049nfeq2 2909 . . . . . 6 𝑥 𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}
51 nfcv 2891 . . . . . . 7 𝑦𝑐
5251, 27rexeqf 3330 . . . . . 6 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∃𝑦𝑐 𝜑 ↔ ∃𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
5350, 52ralbid 3250 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∀𝑥𝐴𝑦𝑐 𝜑 ↔ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑))
5451, 27raleqf 3329 . . . . 5 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → (∀𝑦𝑐𝑥𝐴 𝜑 ↔ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑))
5544, 53, 543anbi123d 1438 . . . 4 (𝑐 = {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} → ((𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑) ↔ ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)))
5655spcegv 3563 . . 3 ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V → (({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
5756imp 406 . 2 (({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ∈ V ∧ ({𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑} ⊆ 𝐵 ∧ ∀𝑥𝐴𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}𝜑 ∧ ∀𝑦 ∈ {𝑧𝐵 ∣ ∃𝑤𝐴 [𝑤 / 𝑥][𝑧 / 𝑦]𝜑}∃𝑥𝐴 𝜑)) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
581, 43, 57syl2an 596 1 ((𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐(𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  [wsbc 3753  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-in 3921  df-ss 3931  df-pw 4565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator