| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfindes | Structured version Visualization version GIF version | ||
| Description: Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.) |
| Ref | Expression |
|---|---|
| tfindes.1 | ⊢ [∅ / 𝑥]𝜑 |
| tfindes.2 | ⊢ (𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) |
| tfindes.3 | ⊢ (Lim 𝑦 → (∀𝑥 ∈ 𝑦 𝜑 → [𝑦 / 𝑥]𝜑)) |
| Ref | Expression |
|---|---|
| tfindes | ⊢ (𝑥 ∈ On → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3758 | . 2 ⊢ (𝑦 = ∅ → ([𝑦 / 𝑥]𝜑 ↔ [∅ / 𝑥]𝜑)) | |
| 2 | dfsbcq 3758 | . 2 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 3 | dfsbcq 3758 | . 2 ⊢ (𝑦 = suc 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [suc 𝑧 / 𝑥]𝜑)) | |
| 4 | sbceq2a 3768 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 5 | tfindes.1 | . 2 ⊢ [∅ / 𝑥]𝜑 | |
| 6 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ On | |
| 7 | nfsbc1v 3776 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 8 | nfsbc1v 3776 | . . . . 5 ⊢ Ⅎ𝑥[suc 𝑧 / 𝑥]𝜑 | |
| 9 | 7, 8 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑥([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑) |
| 10 | 6, 9 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)) |
| 11 | eleq1w 2812 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ On ↔ 𝑧 ∈ On)) | |
| 12 | sbceq1a 3767 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 13 | suceq 6403 | . . . . . 6 ⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) | |
| 14 | 13 | sbceq1d 3761 | . . . . 5 ⊢ (𝑥 = 𝑧 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑧 / 𝑥]𝜑)) |
| 15 | 12, 14 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑))) |
| 16 | 11, 15 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ↔ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)))) |
| 17 | tfindes.2 | . . 3 ⊢ (𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) | |
| 18 | 10, 16, 17 | chvarfv 2241 | . 2 ⊢ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)) |
| 19 | cbvralsvw 3292 | . . . 4 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) | |
| 20 | sbsbc 3760 | . . . . 5 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
| 21 | 20 | ralbii 3076 | . . . 4 ⊢ (∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) |
| 22 | 19, 21 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) |
| 23 | tfindes.3 | . . 3 ⊢ (Lim 𝑦 → (∀𝑥 ∈ 𝑦 𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 24 | 22, 23 | biimtrrid 243 | . 2 ⊢ (Lim 𝑦 → (∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 25 | 1, 2, 3, 4, 5, 18, 24 | tfinds 7839 | 1 ⊢ (𝑥 ∈ On → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2065 ∈ wcel 2109 ∀wral 3045 [wsbc 3756 ∅c0 4299 Oncon0 6335 Lim wlim 6336 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 |
| This theorem is referenced by: tfinds2 7843 rdgssun 37373 |
| Copyright terms: Public domain | W3C validator |