MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindes Structured version   Visualization version   GIF version

Theorem tfindes 7796
Description: Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.)
Hypotheses
Ref Expression
tfindes.1 [∅ / 𝑥]𝜑
tfindes.2 (𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑))
tfindes.3 (Lim 𝑦 → (∀𝑥𝑦 𝜑[𝑦 / 𝑥]𝜑))
Assertion
Ref Expression
tfindes (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfindes
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3744 . 2 (𝑦 = ∅ → ([𝑦 / 𝑥]𝜑[∅ / 𝑥]𝜑))
2 dfsbcq 3744 . 2 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑))
3 dfsbcq 3744 . 2 (𝑦 = suc 𝑧 → ([𝑦 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
4 sbceq2a 3754 . 2 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
5 tfindes.1 . 2 [∅ / 𝑥]𝜑
6 nfv 1914 . . . 4 𝑥 𝑧 ∈ On
7 nfsbc1v 3762 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
8 nfsbc1v 3762 . . . . 5 𝑥[suc 𝑧 / 𝑥]𝜑
97, 8nfim 1896 . . . 4 𝑥([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑)
106, 9nfim 1896 . . 3 𝑥(𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
11 eleq1w 2811 . . . 4 (𝑥 = 𝑧 → (𝑥 ∈ On ↔ 𝑧 ∈ On))
12 sbceq1a 3753 . . . . 5 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
13 suceq 6375 . . . . . 6 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
1413sbceq1d 3747 . . . . 5 (𝑥 = 𝑧 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
1512, 14imbi12d 344 . . . 4 (𝑥 = 𝑧 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑)))
1611, 15imbi12d 344 . . 3 (𝑥 = 𝑧 → ((𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑)) ↔ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))))
17 tfindes.2 . . 3 (𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑))
1810, 16, 17chvarfv 2241 . 2 (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
19 cbvralsvw 3280 . . . 4 (∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
20 sbsbc 3746 . . . . 5 ([𝑧 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
2120ralbii 3075 . . . 4 (∀𝑧𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
2219, 21bitri 275 . . 3 (∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
23 tfindes.3 . . 3 (Lim 𝑦 → (∀𝑥𝑦 𝜑[𝑦 / 𝑥]𝜑))
2422, 23biimtrrid 243 . 2 (Lim 𝑦 → (∀𝑧𝑦 [𝑧 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
251, 2, 3, 4, 5, 18, 24tfinds 7793 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2065  wcel 2109  wral 3044  [wsbc 3742  c0 4284  Oncon0 6307  Lim wlim 6308  suc csuc 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313
This theorem is referenced by:  tfinds2  7797  rdgssun  37356
  Copyright terms: Public domain W3C validator