MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindes Structured version   Visualization version   GIF version

Theorem tfindes 7839
Description: Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.)
Hypotheses
Ref Expression
tfindes.1 [∅ / 𝑥]𝜑
tfindes.2 (𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑))
tfindes.3 (Lim 𝑦 → (∀𝑥𝑦 𝜑[𝑦 / 𝑥]𝜑))
Assertion
Ref Expression
tfindes (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfindes
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3755 . 2 (𝑦 = ∅ → ([𝑦 / 𝑥]𝜑[∅ / 𝑥]𝜑))
2 dfsbcq 3755 . 2 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑))
3 dfsbcq 3755 . 2 (𝑦 = suc 𝑧 → ([𝑦 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
4 sbceq2a 3765 . 2 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
5 tfindes.1 . 2 [∅ / 𝑥]𝜑
6 nfv 1914 . . . 4 𝑥 𝑧 ∈ On
7 nfsbc1v 3773 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
8 nfsbc1v 3773 . . . . 5 𝑥[suc 𝑧 / 𝑥]𝜑
97, 8nfim 1896 . . . 4 𝑥([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑)
106, 9nfim 1896 . . 3 𝑥(𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
11 eleq1w 2811 . . . 4 (𝑥 = 𝑧 → (𝑥 ∈ On ↔ 𝑧 ∈ On))
12 sbceq1a 3764 . . . . 5 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
13 suceq 6400 . . . . . 6 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
1413sbceq1d 3758 . . . . 5 (𝑥 = 𝑧 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
1512, 14imbi12d 344 . . . 4 (𝑥 = 𝑧 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑)))
1611, 15imbi12d 344 . . 3 (𝑥 = 𝑧 → ((𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑)) ↔ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))))
17 tfindes.2 . . 3 (𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑))
1810, 16, 17chvarfv 2241 . 2 (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
19 cbvralsvw 3290 . . . 4 (∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
20 sbsbc 3757 . . . . 5 ([𝑧 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
2120ralbii 3075 . . . 4 (∀𝑧𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
2219, 21bitri 275 . . 3 (∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
23 tfindes.3 . . 3 (Lim 𝑦 → (∀𝑥𝑦 𝜑[𝑦 / 𝑥]𝜑))
2422, 23biimtrrid 243 . 2 (Lim 𝑦 → (∀𝑧𝑦 [𝑧 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
251, 2, 3, 4, 5, 18, 24tfinds 7836 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2065  wcel 2109  wral 3044  [wsbc 3753  c0 4296  Oncon0 6332  Lim wlim 6333  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338
This theorem is referenced by:  tfinds2  7840  rdgssun  37366
  Copyright terms: Public domain W3C validator