| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfindes | Structured version Visualization version GIF version | ||
| Description: Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.) |
| Ref | Expression |
|---|---|
| tfindes.1 | ⊢ [∅ / 𝑥]𝜑 |
| tfindes.2 | ⊢ (𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) |
| tfindes.3 | ⊢ (Lim 𝑦 → (∀𝑥 ∈ 𝑦 𝜑 → [𝑦 / 𝑥]𝜑)) |
| Ref | Expression |
|---|---|
| tfindes | ⊢ (𝑥 ∈ On → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3755 | . 2 ⊢ (𝑦 = ∅ → ([𝑦 / 𝑥]𝜑 ↔ [∅ / 𝑥]𝜑)) | |
| 2 | dfsbcq 3755 | . 2 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 3 | dfsbcq 3755 | . 2 ⊢ (𝑦 = suc 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [suc 𝑧 / 𝑥]𝜑)) | |
| 4 | sbceq2a 3765 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 5 | tfindes.1 | . 2 ⊢ [∅ / 𝑥]𝜑 | |
| 6 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ On | |
| 7 | nfsbc1v 3773 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 8 | nfsbc1v 3773 | . . . . 5 ⊢ Ⅎ𝑥[suc 𝑧 / 𝑥]𝜑 | |
| 9 | 7, 8 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑥([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑) |
| 10 | 6, 9 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)) |
| 11 | eleq1w 2811 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ On ↔ 𝑧 ∈ On)) | |
| 12 | sbceq1a 3764 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 13 | suceq 6400 | . . . . . 6 ⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) | |
| 14 | 13 | sbceq1d 3758 | . . . . 5 ⊢ (𝑥 = 𝑧 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑧 / 𝑥]𝜑)) |
| 15 | 12, 14 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑))) |
| 16 | 11, 15 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ↔ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)))) |
| 17 | tfindes.2 | . . 3 ⊢ (𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) | |
| 18 | 10, 16, 17 | chvarfv 2241 | . 2 ⊢ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)) |
| 19 | cbvralsvw 3290 | . . . 4 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) | |
| 20 | sbsbc 3757 | . . . . 5 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
| 21 | 20 | ralbii 3075 | . . . 4 ⊢ (∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) |
| 22 | 19, 21 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) |
| 23 | tfindes.3 | . . 3 ⊢ (Lim 𝑦 → (∀𝑥 ∈ 𝑦 𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 24 | 22, 23 | biimtrrid 243 | . 2 ⊢ (Lim 𝑦 → (∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 25 | 1, 2, 3, 4, 5, 18, 24 | tfinds 7836 | 1 ⊢ (𝑥 ∈ On → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2065 ∈ wcel 2109 ∀wral 3044 [wsbc 3753 ∅c0 4296 Oncon0 6332 Lim wlim 6333 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 |
| This theorem is referenced by: tfinds2 7840 rdgssun 37366 |
| Copyright terms: Public domain | W3C validator |