| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfindes | Structured version Visualization version GIF version | ||
| Description: Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.) |
| Ref | Expression |
|---|---|
| tfindes.1 | ⊢ [∅ / 𝑥]𝜑 |
| tfindes.2 | ⊢ (𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) |
| tfindes.3 | ⊢ (Lim 𝑦 → (∀𝑥 ∈ 𝑦 𝜑 → [𝑦 / 𝑥]𝜑)) |
| Ref | Expression |
|---|---|
| tfindes | ⊢ (𝑥 ∈ On → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3767 | . 2 ⊢ (𝑦 = ∅ → ([𝑦 / 𝑥]𝜑 ↔ [∅ / 𝑥]𝜑)) | |
| 2 | dfsbcq 3767 | . 2 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 3 | dfsbcq 3767 | . 2 ⊢ (𝑦 = suc 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [suc 𝑧 / 𝑥]𝜑)) | |
| 4 | sbceq2a 3777 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 5 | tfindes.1 | . 2 ⊢ [∅ / 𝑥]𝜑 | |
| 6 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ On | |
| 7 | nfsbc1v 3785 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 8 | nfsbc1v 3785 | . . . . 5 ⊢ Ⅎ𝑥[suc 𝑧 / 𝑥]𝜑 | |
| 9 | 7, 8 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑥([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑) |
| 10 | 6, 9 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)) |
| 11 | eleq1w 2817 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ On ↔ 𝑧 ∈ On)) | |
| 12 | sbceq1a 3776 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 13 | suceq 6419 | . . . . . 6 ⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) | |
| 14 | 13 | sbceq1d 3770 | . . . . 5 ⊢ (𝑥 = 𝑧 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑧 / 𝑥]𝜑)) |
| 15 | 12, 14 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑))) |
| 16 | 11, 15 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ↔ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)))) |
| 17 | tfindes.2 | . . 3 ⊢ (𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) | |
| 18 | 10, 16, 17 | chvarfv 2240 | . 2 ⊢ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)) |
| 19 | cbvralsvw 3296 | . . . 4 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) | |
| 20 | sbsbc 3769 | . . . . 5 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
| 21 | 20 | ralbii 3082 | . . . 4 ⊢ (∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) |
| 22 | 19, 21 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) |
| 23 | tfindes.3 | . . 3 ⊢ (Lim 𝑦 → (∀𝑥 ∈ 𝑦 𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 24 | 22, 23 | biimtrrid 243 | . 2 ⊢ (Lim 𝑦 → (∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 25 | 1, 2, 3, 4, 5, 18, 24 | tfinds 7855 | 1 ⊢ (𝑥 ∈ On → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2064 ∈ wcel 2108 ∀wral 3051 [wsbc 3765 ∅c0 4308 Oncon0 6352 Lim wlim 6353 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 |
| This theorem is referenced by: tfinds2 7859 rdgssun 37396 |
| Copyright terms: Public domain | W3C validator |