MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindes Structured version   Visualization version   GIF version

Theorem tfindes 7900
Description: Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.)
Hypotheses
Ref Expression
tfindes.1 [∅ / 𝑥]𝜑
tfindes.2 (𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑))
tfindes.3 (Lim 𝑦 → (∀𝑥𝑦 𝜑[𝑦 / 𝑥]𝜑))
Assertion
Ref Expression
tfindes (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfindes
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3806 . 2 (𝑦 = ∅ → ([𝑦 / 𝑥]𝜑[∅ / 𝑥]𝜑))
2 dfsbcq 3806 . 2 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑))
3 dfsbcq 3806 . 2 (𝑦 = suc 𝑧 → ([𝑦 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
4 sbceq2a 3816 . 2 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
5 tfindes.1 . 2 [∅ / 𝑥]𝜑
6 nfv 1913 . . . 4 𝑥 𝑧 ∈ On
7 nfsbc1v 3824 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
8 nfsbc1v 3824 . . . . 5 𝑥[suc 𝑧 / 𝑥]𝜑
97, 8nfim 1895 . . . 4 𝑥([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑)
106, 9nfim 1895 . . 3 𝑥(𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
11 eleq1w 2827 . . . 4 (𝑥 = 𝑧 → (𝑥 ∈ On ↔ 𝑧 ∈ On))
12 sbceq1a 3815 . . . . 5 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
13 suceq 6461 . . . . . 6 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
1413sbceq1d 3809 . . . . 5 (𝑥 = 𝑧 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
1512, 14imbi12d 344 . . . 4 (𝑥 = 𝑧 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑)))
1611, 15imbi12d 344 . . 3 (𝑥 = 𝑧 → ((𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑)) ↔ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))))
17 tfindes.2 . . 3 (𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑))
1810, 16, 17chvarfv 2241 . 2 (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
19 cbvralsvw 3323 . . . 4 (∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
20 sbsbc 3808 . . . . 5 ([𝑧 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
2120ralbii 3099 . . . 4 (∀𝑧𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
2219, 21bitri 275 . . 3 (∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
23 tfindes.3 . . 3 (Lim 𝑦 → (∀𝑥𝑦 𝜑[𝑦 / 𝑥]𝜑))
2422, 23biimtrrid 243 . 2 (Lim 𝑦 → (∀𝑧𝑦 [𝑧 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
251, 2, 3, 4, 5, 18, 24tfinds 7897 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2064  wcel 2108  wral 3067  [wsbc 3804  c0 4352  Oncon0 6395  Lim wlim 6396  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401
This theorem is referenced by:  tfinds2  7901  rdgssun  37344
  Copyright terms: Public domain W3C validator