MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindes Structured version   Visualization version   GIF version

Theorem tfindes 7842
Description: Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.)
Hypotheses
Ref Expression
tfindes.1 [∅ / 𝑥]𝜑
tfindes.2 (𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑))
tfindes.3 (Lim 𝑦 → (∀𝑥𝑦 𝜑[𝑦 / 𝑥]𝜑))
Assertion
Ref Expression
tfindes (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfindes
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3758 . 2 (𝑦 = ∅ → ([𝑦 / 𝑥]𝜑[∅ / 𝑥]𝜑))
2 dfsbcq 3758 . 2 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑))
3 dfsbcq 3758 . 2 (𝑦 = suc 𝑧 → ([𝑦 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
4 sbceq2a 3768 . 2 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
5 tfindes.1 . 2 [∅ / 𝑥]𝜑
6 nfv 1914 . . . 4 𝑥 𝑧 ∈ On
7 nfsbc1v 3776 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
8 nfsbc1v 3776 . . . . 5 𝑥[suc 𝑧 / 𝑥]𝜑
97, 8nfim 1896 . . . 4 𝑥([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑)
106, 9nfim 1896 . . 3 𝑥(𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
11 eleq1w 2812 . . . 4 (𝑥 = 𝑧 → (𝑥 ∈ On ↔ 𝑧 ∈ On))
12 sbceq1a 3767 . . . . 5 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
13 suceq 6403 . . . . . 6 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
1413sbceq1d 3761 . . . . 5 (𝑥 = 𝑧 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
1512, 14imbi12d 344 . . . 4 (𝑥 = 𝑧 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑)))
1611, 15imbi12d 344 . . 3 (𝑥 = 𝑧 → ((𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑)) ↔ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))))
17 tfindes.2 . . 3 (𝑥 ∈ On → (𝜑[suc 𝑥 / 𝑥]𝜑))
1810, 16, 17chvarfv 2241 . 2 (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑[suc 𝑧 / 𝑥]𝜑))
19 cbvralsvw 3292 . . . 4 (∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
20 sbsbc 3760 . . . . 5 ([𝑧 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
2120ralbii 3076 . . . 4 (∀𝑧𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
2219, 21bitri 275 . . 3 (∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
23 tfindes.3 . . 3 (Lim 𝑦 → (∀𝑥𝑦 𝜑[𝑦 / 𝑥]𝜑))
2422, 23biimtrrid 243 . 2 (Lim 𝑦 → (∀𝑧𝑦 [𝑧 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
251, 2, 3, 4, 5, 18, 24tfinds 7839 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2065  wcel 2109  wral 3045  [wsbc 3756  c0 4299  Oncon0 6335  Lim wlim 6336  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341
This theorem is referenced by:  tfinds2  7843  rdgssun  37373
  Copyright terms: Public domain W3C validator