Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfindes | Structured version Visualization version GIF version |
Description: Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.) |
Ref | Expression |
---|---|
tfindes.1 | ⊢ [∅ / 𝑥]𝜑 |
tfindes.2 | ⊢ (𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) |
tfindes.3 | ⊢ (Lim 𝑦 → (∀𝑥 ∈ 𝑦 𝜑 → [𝑦 / 𝑥]𝜑)) |
Ref | Expression |
---|---|
tfindes | ⊢ (𝑥 ∈ On → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3713 | . 2 ⊢ (𝑦 = ∅ → ([𝑦 / 𝑥]𝜑 ↔ [∅ / 𝑥]𝜑)) | |
2 | dfsbcq 3713 | . 2 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
3 | dfsbcq 3713 | . 2 ⊢ (𝑦 = suc 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [suc 𝑧 / 𝑥]𝜑)) | |
4 | sbceq2a 3723 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
5 | tfindes.1 | . 2 ⊢ [∅ / 𝑥]𝜑 | |
6 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ On | |
7 | nfsbc1v 3731 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
8 | nfsbc1v 3731 | . . . . 5 ⊢ Ⅎ𝑥[suc 𝑧 / 𝑥]𝜑 | |
9 | 7, 8 | nfim 1900 | . . . 4 ⊢ Ⅎ𝑥([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑) |
10 | 6, 9 | nfim 1900 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)) |
11 | eleq1w 2821 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ On ↔ 𝑧 ∈ On)) | |
12 | sbceq1a 3722 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
13 | suceq 6316 | . . . . . 6 ⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) | |
14 | 13 | sbceq1d 3716 | . . . . 5 ⊢ (𝑥 = 𝑧 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑧 / 𝑥]𝜑)) |
15 | 12, 14 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑))) |
16 | 11, 15 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ↔ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)))) |
17 | tfindes.2 | . . 3 ⊢ (𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) | |
18 | 10, 16, 17 | chvarfv 2236 | . 2 ⊢ (𝑧 ∈ On → ([𝑧 / 𝑥]𝜑 → [suc 𝑧 / 𝑥]𝜑)) |
19 | cbvralsvw 3391 | . . . 4 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) | |
20 | sbsbc 3715 | . . . . 5 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
21 | 20 | ralbii 3090 | . . . 4 ⊢ (∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) |
22 | 19, 21 | bitri 274 | . . 3 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) |
23 | tfindes.3 | . . 3 ⊢ (Lim 𝑦 → (∀𝑥 ∈ 𝑦 𝜑 → [𝑦 / 𝑥]𝜑)) | |
24 | 22, 23 | syl5bir 242 | . 2 ⊢ (Lim 𝑦 → (∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
25 | 1, 2, 3, 4, 5, 18, 24 | tfinds 7681 | 1 ⊢ (𝑥 ∈ On → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2068 ∈ wcel 2108 ∀wral 3063 [wsbc 3711 ∅c0 4253 Oncon0 6251 Lim wlim 6252 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 |
This theorem is referenced by: tfinds2 7685 rdgssun 35476 |
Copyright terms: Public domain | W3C validator |