MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssnn0fi Structured version   Visualization version   GIF version

Theorem rabssnn0fi 13634
Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
rabssnn0fi ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
Distinct variable groups:   𝑥,𝑠   𝜑,𝑠
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabssnn0fi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4009 . 2 {𝑥 ∈ ℕ0𝜑} ⊆ ℕ0
2 ssnn0fi 13633 . . 3 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑})))
3 nnel 3057 . . . . . . . . . 10 𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ 𝑦 ∈ {𝑥 ∈ ℕ0𝜑})
4 nfcv 2906 . . . . . . . . . . . 12 𝑥𝑦
5 nfcv 2906 . . . . . . . . . . . 12 𝑥0
6 nfsbc1v 3731 . . . . . . . . . . . . 13 𝑥[𝑦 / 𝑥] ¬ 𝜑
76nfn 1861 . . . . . . . . . . . 12 𝑥 ¬ [𝑦 / 𝑥] ¬ 𝜑
8 sbceq2a 3723 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑))
98equcoms 2024 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑))
109con2bid 354 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝜑 ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
114, 5, 7, 10elrabf 3613 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ ℕ0𝜑} ↔ (𝑦 ∈ ℕ0 ∧ ¬ [𝑦 / 𝑥] ¬ 𝜑))
1211baib 535 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (𝑦 ∈ {𝑥 ∈ ℕ0𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
133, 12syl5bb 282 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (¬ 𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
1413con4bid 316 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ [𝑦 / 𝑥] ¬ 𝜑))
1514imbi2d 340 . . . . . . 7 (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑)))
1615ralbiia 3089 . . . . . 6 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑))
17 nfv 1918 . . . . . . . 8 𝑥 𝑠 < 𝑦
1817, 6nfim 1900 . . . . . . 7 𝑥(𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑)
19 nfv 1918 . . . . . . 7 𝑦(𝑠 < 𝑥 → ¬ 𝜑)
20 breq2 5074 . . . . . . . 8 (𝑦 = 𝑥 → (𝑠 < 𝑦𝑠 < 𝑥))
2120, 8imbi12d 344 . . . . . . 7 (𝑦 = 𝑥 → ((𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑠 < 𝑥 → ¬ 𝜑)))
2218, 19, 21cbvralw 3363 . . . . . 6 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
2316, 22bitri 274 . . . . 5 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
2423a1i 11 . . . 4 (({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0𝑠 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
2524rexbidva 3224 . . 3 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → (∃𝑠 ∈ ℕ0𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
262, 25bitrd 278 . 2 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
271, 26ax-mp 5 1 ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2108  wnel 3048  wral 3063  wrex 3064  {crab 3067  [wsbc 3711  wss 3883   class class class wbr 5070  Fincfn 8691   < clt 10940  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  fsuppmapnn0ub  13643  mptnn0fsupp  13645  mptnn0fsuppr  13647  pmatcollpw2lem  21834
  Copyright terms: Public domain W3C validator