MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssnn0fi Structured version   Visualization version   GIF version

Theorem rabssnn0fi 13706
Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
rabssnn0fi ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
Distinct variable groups:   𝑥,𝑠   𝜑,𝑠
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabssnn0fi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4013 . 2 {𝑥 ∈ ℕ0𝜑} ⊆ ℕ0
2 ssnn0fi 13705 . . 3 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑})))
3 nnel 3058 . . . . . . . . . 10 𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ 𝑦 ∈ {𝑥 ∈ ℕ0𝜑})
4 nfcv 2907 . . . . . . . . . . . 12 𝑥𝑦
5 nfcv 2907 . . . . . . . . . . . 12 𝑥0
6 nfsbc1v 3736 . . . . . . . . . . . . 13 𝑥[𝑦 / 𝑥] ¬ 𝜑
76nfn 1860 . . . . . . . . . . . 12 𝑥 ¬ [𝑦 / 𝑥] ¬ 𝜑
8 sbceq2a 3728 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑))
98equcoms 2023 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑))
109con2bid 355 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝜑 ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
114, 5, 7, 10elrabf 3620 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ ℕ0𝜑} ↔ (𝑦 ∈ ℕ0 ∧ ¬ [𝑦 / 𝑥] ¬ 𝜑))
1211baib 536 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (𝑦 ∈ {𝑥 ∈ ℕ0𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
133, 12bitrid 282 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (¬ 𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
1413con4bid 317 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ [𝑦 / 𝑥] ¬ 𝜑))
1514imbi2d 341 . . . . . . 7 (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑)))
1615ralbiia 3091 . . . . . 6 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑))
17 nfv 1917 . . . . . . . 8 𝑥 𝑠 < 𝑦
1817, 6nfim 1899 . . . . . . 7 𝑥(𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑)
19 nfv 1917 . . . . . . 7 𝑦(𝑠 < 𝑥 → ¬ 𝜑)
20 breq2 5078 . . . . . . . 8 (𝑦 = 𝑥 → (𝑠 < 𝑦𝑠 < 𝑥))
2120, 8imbi12d 345 . . . . . . 7 (𝑦 = 𝑥 → ((𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑠 < 𝑥 → ¬ 𝜑)))
2218, 19, 21cbvralw 3373 . . . . . 6 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
2316, 22bitri 274 . . . . 5 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
2423a1i 11 . . . 4 (({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0𝑠 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
2524rexbidva 3225 . . 3 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → (∃𝑠 ∈ ℕ0𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
262, 25bitrd 278 . 2 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
271, 26ax-mp 5 1 ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  wnel 3049  wral 3064  wrex 3065  {crab 3068  [wsbc 3716  wss 3887   class class class wbr 5074  Fincfn 8733   < clt 11009  0cn0 12233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  fsuppmapnn0ub  13715  mptnn0fsupp  13717  mptnn0fsuppr  13719  pmatcollpw2lem  21926
  Copyright terms: Public domain W3C validator