Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabssnn0fi | Structured version Visualization version GIF version |
Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.) |
Ref | Expression |
---|---|
rabssnn0fi | ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3986 | . 2 ⊢ {𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 | |
2 | ssnn0fi 13415 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}))) | |
3 | nnel 3064 | . . . . . . . . . 10 ⊢ (¬ 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑}) | |
4 | nfcv 2919 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑦 | |
5 | nfcv 2919 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥ℕ0 | |
6 | nfsbc1v 3718 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑥[𝑦 / 𝑥] ¬ 𝜑 | |
7 | 6 | nfn 1858 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥 ¬ [𝑦 / 𝑥] ¬ 𝜑 |
8 | sbceq2a 3710 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑)) | |
9 | 8 | equcoms 2027 | . . . . . . . . . . . . 13 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑)) |
10 | 9 | con2bid 358 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
11 | 4, 5, 7, 10 | elrabf 3600 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ (𝑦 ∈ ℕ0 ∧ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
12 | 11 | baib 539 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ0 → (𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
13 | 3, 12 | syl5bb 286 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 → (¬ 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
14 | 13 | con4bid 320 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ0 → (𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ [𝑦 / 𝑥] ¬ 𝜑)) |
15 | 14 | imbi2d 344 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑))) |
16 | 15 | ralbiia 3096 | . . . . . 6 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑)) |
17 | nfv 1915 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑠 < 𝑦 | |
18 | 17, 6 | nfim 1897 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) |
19 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑠 < 𝑥 → ¬ 𝜑) | |
20 | breq2 5040 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑠 < 𝑦 ↔ 𝑠 < 𝑥)) | |
21 | 20, 8 | imbi12d 348 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑠 < 𝑥 → ¬ 𝜑))) |
22 | 18, 19, 21 | cbvralw 3352 | . . . . . 6 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
23 | 16, 22 | bitri 278 | . . . . 5 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
24 | 23 | a1i 11 | . . . 4 ⊢ (({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
25 | 24 | rexbidva 3220 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → (∃𝑠 ∈ ℕ0 ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
26 | 2, 25 | bitrd 282 | . 2 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
27 | 1, 26 | ax-mp 5 | 1 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 ∉ wnel 3055 ∀wral 3070 ∃wrex 3071 {crab 3074 [wsbc 3698 ⊆ wss 3860 class class class wbr 5036 Fincfn 8540 < clt 10726 ℕ0cn0 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 |
This theorem is referenced by: fsuppmapnn0ub 13425 mptnn0fsupp 13427 mptnn0fsuppr 13429 pmatcollpw2lem 21491 |
Copyright terms: Public domain | W3C validator |