Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssnn0fi Structured version   Visualization version   GIF version

Theorem rabssnn0fi 13416
 Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
rabssnn0fi ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
Distinct variable groups:   𝑥,𝑠   𝜑,𝑠
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabssnn0fi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3986 . 2 {𝑥 ∈ ℕ0𝜑} ⊆ ℕ0
2 ssnn0fi 13415 . . 3 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑})))
3 nnel 3064 . . . . . . . . . 10 𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ 𝑦 ∈ {𝑥 ∈ ℕ0𝜑})
4 nfcv 2919 . . . . . . . . . . . 12 𝑥𝑦
5 nfcv 2919 . . . . . . . . . . . 12 𝑥0
6 nfsbc1v 3718 . . . . . . . . . . . . 13 𝑥[𝑦 / 𝑥] ¬ 𝜑
76nfn 1858 . . . . . . . . . . . 12 𝑥 ¬ [𝑦 / 𝑥] ¬ 𝜑
8 sbceq2a 3710 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑))
98equcoms 2027 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑))
109con2bid 358 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝜑 ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
114, 5, 7, 10elrabf 3600 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ ℕ0𝜑} ↔ (𝑦 ∈ ℕ0 ∧ ¬ [𝑦 / 𝑥] ¬ 𝜑))
1211baib 539 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (𝑦 ∈ {𝑥 ∈ ℕ0𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
133, 12syl5bb 286 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (¬ 𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
1413con4bid 320 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ [𝑦 / 𝑥] ¬ 𝜑))
1514imbi2d 344 . . . . . . 7 (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑)))
1615ralbiia 3096 . . . . . 6 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑))
17 nfv 1915 . . . . . . . 8 𝑥 𝑠 < 𝑦
1817, 6nfim 1897 . . . . . . 7 𝑥(𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑)
19 nfv 1915 . . . . . . 7 𝑦(𝑠 < 𝑥 → ¬ 𝜑)
20 breq2 5040 . . . . . . . 8 (𝑦 = 𝑥 → (𝑠 < 𝑦𝑠 < 𝑥))
2120, 8imbi12d 348 . . . . . . 7 (𝑦 = 𝑥 → ((𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑠 < 𝑥 → ¬ 𝜑)))
2218, 19, 21cbvralw 3352 . . . . . 6 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
2316, 22bitri 278 . . . . 5 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
2423a1i 11 . . . 4 (({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0𝑠 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
2524rexbidva 3220 . . 3 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → (∃𝑠 ∈ ℕ0𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
262, 25bitrd 282 . 2 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
271, 26ax-mp 5 1 ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2111   ∉ wnel 3055  ∀wral 3070  ∃wrex 3071  {crab 3074  [wsbc 3698   ⊆ wss 3860   class class class wbr 5036  Fincfn 8540   < clt 10726  ℕ0cn0 11947 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953 This theorem is referenced by:  fsuppmapnn0ub  13425  mptnn0fsupp  13427  mptnn0fsuppr  13429  pmatcollpw2lem  21491
 Copyright terms: Public domain W3C validator