| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabssnn0fi | Structured version Visualization version GIF version | ||
| Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| rabssnn0fi | ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4043 | . 2 ⊢ {𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 | |
| 2 | ssnn0fi 13950 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}))) | |
| 3 | nnel 3039 | . . . . . . . . . 10 ⊢ (¬ 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑}) | |
| 4 | nfcv 2891 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑦 | |
| 5 | nfcv 2891 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥ℕ0 | |
| 6 | nfsbc1v 3773 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑥[𝑦 / 𝑥] ¬ 𝜑 | |
| 7 | 6 | nfn 1857 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥 ¬ [𝑦 / 𝑥] ¬ 𝜑 |
| 8 | sbceq2a 3765 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑)) | |
| 9 | 8 | equcoms 2020 | . . . . . . . . . . . . 13 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑)) |
| 10 | 9 | con2bid 354 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
| 11 | 4, 5, 7, 10 | elrabf 3655 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ (𝑦 ∈ ℕ0 ∧ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
| 12 | 11 | baib 535 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ0 → (𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
| 13 | 3, 12 | bitrid 283 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 → (¬ 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
| 14 | 13 | con4bid 317 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ0 → (𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ [𝑦 / 𝑥] ¬ 𝜑)) |
| 15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑))) |
| 16 | 15 | ralbiia 3073 | . . . . . 6 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑)) |
| 17 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑠 < 𝑦 | |
| 18 | 17, 6 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) |
| 19 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑠 < 𝑥 → ¬ 𝜑) | |
| 20 | breq2 5111 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑠 < 𝑦 ↔ 𝑠 < 𝑥)) | |
| 21 | 20, 8 | imbi12d 344 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑠 < 𝑥 → ¬ 𝜑))) |
| 22 | 18, 19, 21 | cbvralw 3280 | . . . . . 6 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
| 23 | 16, 22 | bitri 275 | . . . . 5 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
| 25 | 24 | rexbidva 3155 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → (∃𝑠 ∈ ℕ0 ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
| 26 | 2, 25 | bitrd 279 | . 2 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
| 27 | 1, 26 | ax-mp 5 | 1 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 ∃wrex 3053 {crab 3405 [wsbc 3753 ⊆ wss 3914 class class class wbr 5107 Fincfn 8918 < clt 11208 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: fsuppmapnn0ub 13960 mptnn0fsupp 13962 mptnn0fsuppr 13964 pmatcollpw2lem 22664 |
| Copyright terms: Public domain | W3C validator |