![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabssnn0fi | Structured version Visualization version GIF version |
Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.) |
Ref | Expression |
---|---|
rabssnn0fi | ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4076 | . 2 ⊢ {𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 | |
2 | ssnn0fi 13946 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}))) | |
3 | nnel 3056 | . . . . . . . . . 10 ⊢ (¬ 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑}) | |
4 | nfcv 2903 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑦 | |
5 | nfcv 2903 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥ℕ0 | |
6 | nfsbc1v 3796 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑥[𝑦 / 𝑥] ¬ 𝜑 | |
7 | 6 | nfn 1860 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥 ¬ [𝑦 / 𝑥] ¬ 𝜑 |
8 | sbceq2a 3788 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑)) | |
9 | 8 | equcoms 2023 | . . . . . . . . . . . . 13 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑)) |
10 | 9 | con2bid 354 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
11 | 4, 5, 7, 10 | elrabf 3678 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ (𝑦 ∈ ℕ0 ∧ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
12 | 11 | baib 536 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ0 → (𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
13 | 3, 12 | bitrid 282 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 → (¬ 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
14 | 13 | con4bid 316 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ0 → (𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ [𝑦 / 𝑥] ¬ 𝜑)) |
15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑))) |
16 | 15 | ralbiia 3091 | . . . . . 6 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑)) |
17 | nfv 1917 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑠 < 𝑦 | |
18 | 17, 6 | nfim 1899 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) |
19 | nfv 1917 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑠 < 𝑥 → ¬ 𝜑) | |
20 | breq2 5151 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑠 < 𝑦 ↔ 𝑠 < 𝑥)) | |
21 | 20, 8 | imbi12d 344 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑠 < 𝑥 → ¬ 𝜑))) |
22 | 18, 19, 21 | cbvralw 3303 | . . . . . 6 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
23 | 16, 22 | bitri 274 | . . . . 5 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
24 | 23 | a1i 11 | . . . 4 ⊢ (({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
25 | 24 | rexbidva 3176 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → (∃𝑠 ∈ ℕ0 ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
26 | 2, 25 | bitrd 278 | . 2 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
27 | 1, 26 | ax-mp 5 | 1 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∉ wnel 3046 ∀wral 3061 ∃wrex 3070 {crab 3432 [wsbc 3776 ⊆ wss 3947 class class class wbr 5147 Fincfn 8935 < clt 11244 ℕ0cn0 12468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 |
This theorem is referenced by: fsuppmapnn0ub 13956 mptnn0fsupp 13958 mptnn0fsuppr 13960 pmatcollpw2lem 22270 |
Copyright terms: Public domain | W3C validator |