![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabssnn0fi | Structured version Visualization version GIF version |
Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.) |
Ref | Expression |
---|---|
rabssnn0fi | ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4069 | . 2 ⊢ {𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 | |
2 | ssnn0fi 13982 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}))) | |
3 | nnel 3046 | . . . . . . . . . 10 ⊢ (¬ 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑}) | |
4 | nfcv 2892 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑦 | |
5 | nfcv 2892 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥ℕ0 | |
6 | nfsbc1v 3788 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑥[𝑦 / 𝑥] ¬ 𝜑 | |
7 | 6 | nfn 1852 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥 ¬ [𝑦 / 𝑥] ¬ 𝜑 |
8 | sbceq2a 3780 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑)) | |
9 | 8 | equcoms 2015 | . . . . . . . . . . . . 13 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑)) |
10 | 9 | con2bid 353 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
11 | 4, 5, 7, 10 | elrabf 3670 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ (𝑦 ∈ ℕ0 ∧ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
12 | 11 | baib 534 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ0 → (𝑦 ∈ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
13 | 3, 12 | bitrid 282 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 → (¬ 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑)) |
14 | 13 | con4bid 316 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ0 → (𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑} ↔ [𝑦 / 𝑥] ¬ 𝜑)) |
15 | 14 | imbi2d 339 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑))) |
16 | 15 | ralbiia 3081 | . . . . . 6 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑)) |
17 | nfv 1909 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑠 < 𝑦 | |
18 | 17, 6 | nfim 1891 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) |
19 | nfv 1909 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑠 < 𝑥 → ¬ 𝜑) | |
20 | breq2 5147 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑠 < 𝑦 ↔ 𝑠 < 𝑥)) | |
21 | 20, 8 | imbi12d 343 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑠 < 𝑥 → ¬ 𝜑))) |
22 | 18, 19, 21 | cbvralw 3294 | . . . . . 6 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → [𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
23 | 16, 22 | bitri 274 | . . . . 5 ⊢ (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
24 | 23 | a1i 11 | . . . 4 ⊢ (({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
25 | 24 | rexbidva 3167 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → (∃𝑠 ∈ ℕ0 ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦 → 𝑦 ∉ {𝑥 ∈ ℕ0 ∣ 𝜑}) ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
26 | 2, 25 | bitrd 278 | . 2 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))) |
27 | 1, 26 | ax-mp 5 | 1 ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ∉ wnel 3036 ∀wral 3051 ∃wrex 3060 {crab 3419 [wsbc 3768 ⊆ wss 3939 class class class wbr 5143 Fincfn 8962 < clt 11278 ℕ0cn0 12502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 |
This theorem is referenced by: fsuppmapnn0ub 13992 mptnn0fsupp 13994 mptnn0fsuppr 13996 pmatcollpw2lem 22697 |
Copyright terms: Public domain | W3C validator |