Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdc Structured version   Visualization version   GIF version

Theorem fdc 36917
Description: Finite version of dependent choice. Construct a function whose value depends on the previous function value, except at a final point at which no new value can be chosen. The final hypothesis ensures that the process will terminate. The proof does not use the Axiom of Choice. (Contributed by Jeff Madsen, 18-Jun-2010.)
Hypotheses
Ref Expression
fdc.1 𝐴 ∈ V
fdc.2 𝑀 ∈ ℤ
fdc.3 𝑍 = (ℤ𝑀)
fdc.4 𝑁 = (𝑀 + 1)
fdc.5 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
fdc.6 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
fdc.7 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
fdc.8 (𝜂𝐶𝐴)
fdc.9 (𝜂𝑅 Fr 𝐴)
fdc.10 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
fdc.11 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
Assertion
Ref Expression
fdc (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Distinct variable groups:   𝐶,𝑓,𝑛   𝐴,𝑎,𝑏,𝑓,𝑛   𝑀,𝑎,𝑏,𝑓,𝑘,𝑛   𝑍,𝑎,𝑏,𝑛   𝑁,𝑎,𝑏,𝑓,𝑘,𝑛   𝑅,𝑎,𝑏   𝜑,𝑓,𝑘   𝜓,𝑎   𝜒,𝑎,𝑏,𝑛   𝜃,𝑓,𝑛   𝜏,𝑎,𝑏   𝜂,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑛,𝑎,𝑏)   𝜓(𝑓,𝑘,𝑛,𝑏)   𝜒(𝑓,𝑘)   𝜃(𝑘,𝑎,𝑏)   𝜏(𝑓,𝑘,𝑛)   𝜂(𝑓,𝑘,𝑛)   𝐴(𝑘)   𝐶(𝑘,𝑎,𝑏)   𝑅(𝑓,𝑘,𝑛)   𝑍(𝑓,𝑘)

Proof of Theorem fdc
Dummy variables 𝑐 𝑑 𝑔 𝑚 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fdc.8 . 2 (𝜂𝐶𝐴)
2 fdc.2 . . . . . . . . . . . . . . . . . . 19 𝑀 ∈ ℤ
3 uzid 12842 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
42, 3ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑀 ∈ (ℤ𝑀)
5 fdc.3 . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑀)
64, 5eleqtrri 2831 . . . . . . . . . . . . . . . . 17 𝑀𝑍
7 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 {⟨𝑀, 𝑎⟩} = {⟨𝑀, 𝑎⟩}
82elexi 3493 . . . . . . . . . . . . . . . . . . . . . . 23 𝑀 ∈ V
9 vex 3477 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 ∈ V
108, 9fsn 7135 . . . . . . . . . . . . . . . . . . . . . 22 ({⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎} ↔ {⟨𝑀, 𝑎⟩} = {⟨𝑀, 𝑎⟩})
117, 10mpbir 230 . . . . . . . . . . . . . . . . . . . . 21 {⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎}
12 snssi 4811 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝐴 → {𝑎} ⊆ 𝐴)
13 fss 6734 . . . . . . . . . . . . . . . . . . . . 21 (({⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎} ∧ {𝑎} ⊆ 𝐴) → {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
1411, 12, 13sylancr 586 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐴 → {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
15 fzsn 13548 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
162, 15ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (𝑀...𝑀) = {𝑀}
1716feq2i 6709 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ↔ {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
1814, 17sylibr 233 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐴 → {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴)
1918adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴)
208, 9fvsn 7181 . . . . . . . . . . . . . . . . . . 19 ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎
2120a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎)
22 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → 𝜃)
23 snex 5431 . . . . . . . . . . . . . . . . . . 19 {⟨𝑀, 𝑎⟩} ∈ V
24 feq1 6698 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓:(𝑀...𝑀)⟶𝐴 ↔ {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴))
25 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓𝑀) = ({⟨𝑀, 𝑎⟩}‘𝑀))
2625eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {⟨𝑀, 𝑎⟩} → ((𝑓𝑀) = 𝑎 ↔ ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎))
2725, 20eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓𝑀) = 𝑎)
28 sbceq2a 3789 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑀) = 𝑎 → ([(𝑓𝑀) / 𝑎]𝜃𝜃))
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {⟨𝑀, 𝑎⟩} → ([(𝑓𝑀) / 𝑎]𝜃𝜃))
3026, 29anbi12d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = {⟨𝑀, 𝑎⟩} → (((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ↔ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃)))
3124, 30anbi12d 630 . . . . . . . . . . . . . . . . . . 19 (𝑓 = {⟨𝑀, 𝑎⟩} → ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)) ↔ ({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ∧ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃))))
3223, 31spcev 3596 . . . . . . . . . . . . . . . . . 18 (({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ∧ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃)) → ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
3319, 21, 22, 32syl12anc 834 . . . . . . . . . . . . . . . . 17 ((𝑎𝐴𝜃) → ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
34 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
3534feq2d 6703 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑀)⟶𝐴))
36 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓𝑛) ∈ V
37 fdc.7 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
3836, 37sbcie 3820 . . . . . . . . . . . . . . . . . . . . . . 23 ([(𝑓𝑛) / 𝑎]𝜃𝜏)
39 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑀 → (𝑓𝑛) = (𝑓𝑀))
4039sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑀 → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓𝑀) / 𝑎]𝜃))
4138, 40bitr3id 285 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝜏[(𝑓𝑀) / 𝑎]𝜃))
4241anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (((𝑓𝑀) = 𝑎𝜏) ↔ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
43 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑀 → (𝑁...𝑛) = (𝑁...𝑀))
44 fdc.4 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑁 = (𝑀 + 1)
4544oveq1i 7422 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁...𝑀) = ((𝑀 + 1)...𝑀)
462zrei 12569 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 ∈ ℝ
4746ltp1i 12123 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑀 < (𝑀 + 1)
48 peano2z 12608 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
492, 48ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 + 1) ∈ ℤ
50 fzn 13522 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑀) = ∅))
5149, 2, 50mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑀) = ∅)
5247, 51mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 + 1)...𝑀) = ∅
5345, 52eqtri 2759 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁...𝑀) = ∅
5443, 53eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝑁...𝑛) = ∅)
5554raleqdv 3324 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ ∅ 𝜒))
5635, 42, 553anbi123d 1435 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑀 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒)))
57 ral0 4512 . . . . . . . . . . . . . . . . . . . . 21 𝑘 ∈ ∅ 𝜒
58 df-3an 1088 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒) ↔ ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)) ∧ ∀𝑘 ∈ ∅ 𝜒))
5957, 58mpbiran2 707 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
6056, 59bitrdi 287 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑀 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))))
6160exbidv 1923 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑀 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))))
6261rspcev 3612 . . . . . . . . . . . . . . . . 17 ((𝑀𝑍 ∧ ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
636, 33, 62sylancr 586 . . . . . . . . . . . . . . . 16 ((𝑎𝐴𝜃) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6463adantll 711 . . . . . . . . . . . . . . 15 (((𝜂𝑎𝐴) ∧ 𝜃) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6564a1d 25 . . . . . . . . . . . . . 14 (((𝜂𝑎𝐴) ∧ 𝜃) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
66 fdc.11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
67 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑏 → (𝑑𝑅𝑎𝑏𝑅𝑎))
6867rspcev 3612 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∧ 𝑏𝑅𝑎) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎)
6968expcom 413 . . . . . . . . . . . . . . . . . . . . 21 (𝑏𝑅𝑎 → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎))
7066, 69syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎))
71 dfrex2 3072 . . . . . . . . . . . . . . . . . . . 20 (∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎 ↔ ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
7270, 71imbitrdi 250 . . . . . . . . . . . . . . . . . . 19 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
7372con2d 134 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
74 eldif 3958 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ (𝑏𝐴 ∧ ¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
7574simplbi2 500 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐴 → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → 𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))))
76 ssrab2 4077 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴
77 dfss4 4258 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
7876, 77mpbi 229 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}
7978eleq2i 2824 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ 𝑏 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
80 eqeq2 2743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑏 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝑏))
8180anbi1d 629 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑏 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝑏𝜏)))
82813anbi2d 1440 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑏 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8382exbidv 1923 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = 𝑏 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8483rexbidv 3177 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = 𝑏 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8584elrab3 3684 . . . . . . . . . . . . . . . . . . . . 21 (𝑏𝐴 → (𝑏 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8679, 85bitrid 283 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐴 → (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8775, 86sylibd 238 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐴 → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8887ad2antll 726 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
89 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑀...𝑛) = (𝑀...𝑚))
9089feq2d 6703 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑚)⟶𝐴))
91 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
9291sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓𝑚) / 𝑎]𝜃))
9338, 92bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝜏[(𝑓𝑚) / 𝑎]𝜃))
9493anbi2d 628 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (((𝑓𝑀) = 𝑏𝜏) ↔ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃)))
95 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑁...𝑛) = (𝑁...𝑚))
9695raleqdv 3324 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ (𝑁...𝑚)𝜒))
9790, 94, 963anbi123d 1435 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒)))
9897exbidv 1923 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒)))
9998cbvrexvw 3234 . . . . . . . . . . . . . . . . . . . 20 (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑚𝑍𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒))
100 feq1 6698 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝑓:(𝑀...𝑚)⟶𝐴𝑔:(𝑀...𝑚)⟶𝐴))
101 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → (𝑓𝑀) = (𝑔𝑀))
102101eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → ((𝑓𝑀) = 𝑏 ↔ (𝑔𝑀) = 𝑏))
103 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → (𝑓𝑚) = (𝑔𝑚))
104103sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → ([(𝑓𝑚) / 𝑎]𝜃[(𝑔𝑚) / 𝑎]𝜃))
105102, 104anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ↔ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃)))
106 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓‘(𝑘 − 1)) ∈ V
107 fdc.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
108107sbcbidv 3836 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓‘(𝑘 − 1)) → ([(𝑓𝑘) / 𝑏]𝜑[(𝑓𝑘) / 𝑏]𝜓))
109106, 108sbcie 3820 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[(𝑓𝑘) / 𝑏]𝜓)
110 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓𝑘) ∈ V
111 fdc.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
112110, 111sbcie 3820 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([(𝑓𝑘) / 𝑏]𝜓𝜒)
113109, 112bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . 25 ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑𝜒)
114 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑔 → (𝑓‘(𝑘 − 1)) = (𝑔‘(𝑘 − 1)))
115 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑔 → (𝑓𝑘) = (𝑔𝑘))
116115sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑔 → ([(𝑓𝑘) / 𝑏]𝜑[(𝑔𝑘) / 𝑏]𝜑))
117114, 116sbceqbid 3784 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
118113, 117bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → (𝜒[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
119118ralbidv 3176 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (∀𝑘 ∈ (𝑁...𝑚)𝜒 ↔ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
120100, 105, 1193anbi123d 1435 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑔 → ((𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)))
121120cbvexvw 2039 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ ∃𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
122121rexbii 3093 . . . . . . . . . . . . . . . . . . . 20 (∃𝑚𝑍𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ ∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
12399, 122bitri 275 . . . . . . . . . . . . . . . . . . 19 (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
1245peano2uzs 12891 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚𝑍 → (𝑚 + 1) ∈ 𝑍)
125124ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → (𝑚 + 1) ∈ 𝑍)
126 sbceq2a 3789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑑 = 𝑏 → ([𝑑 / 𝑏]𝜑𝜑))
127126anbi1d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 = 𝑏 → (([𝑑 / 𝑏]𝜑𝑎𝐴) ↔ (𝜑𝑎𝐴)))
128127anbi1d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 = 𝑏 → ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) ↔ ((𝜑𝑎𝐴) ∧ 𝑚𝑍)))
129 eqeq2 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑑 = 𝑏 → ((𝑔𝑀) = 𝑑 ↔ (𝑔𝑀) = 𝑏))
130129anbi1d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑑 = 𝑏 → (((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ↔ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃)))
1311303anbi2d 1440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 = 𝑏 → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) ↔ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)))
132131imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 = 𝑏 → (((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) ↔ ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))))
133128, 132imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 = 𝑏 → (((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))) ↔ (((𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))))
134 sbceq2a 3789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → ([𝑐 / 𝑎][𝑑 / 𝑏]𝜑[𝑑 / 𝑏]𝜑))
135 eleq1 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → (𝑐𝐴𝑎𝐴))
136134, 135anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ↔ ([𝑑 / 𝑏]𝜑𝑎𝐴)))
137136anbi1d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ↔ (([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍)))
138 eqeq2 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑎 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝑎))
139138anbi1d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑎 → (((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ↔ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃)))
1401393anbi2d 1440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → ((𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
141140exbidv 1923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
142141imbi2d 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → (((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) ↔ ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))))
143137, 142imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = 𝑎 → (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))) ↔ ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))))
144 peano2uz 12890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (ℤ𝑀))
145144, 5eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ𝑀))
146 elfzp12 13585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚 + 1) ∈ (ℤ𝑀) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
147145, 146syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
148147ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
149 iftrue 4534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = 𝑐)
150149eleq1d 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = 𝑀 → (if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴𝑐𝐴))
151150biimprcd 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐𝐴 → (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
152151ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
153 1re 11219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1 ∈ ℝ
15446, 153readdcli 11234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑀 + 1) ∈ ℝ
15546, 154ltnlei 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀)
15647, 155mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ¬ (𝑀 + 1) ≤ 𝑀
157 eleq1 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = 𝑀 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) ↔ 𝑀 ∈ ((𝑀 + 1)...(𝑚 + 1))))
158 elfzle1 13509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑀 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑀 + 1) ≤ 𝑀)
159157, 158syl6bi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥 = 𝑀 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑀 + 1) ≤ 𝑀))
160159com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 = 𝑀 → (𝑀 + 1) ≤ 𝑀))
161156, 160mtoi 198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → ¬ 𝑥 = 𝑀)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → ¬ 𝑥 = 𝑀)
163162iffalsed 4539 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = (𝑔‘(𝑥 − 1)))
164 elfzelz 13506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → 𝑥 ∈ ℤ)
165164adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → 𝑥 ∈ ℤ)
166 eluzelz 12837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
167166, 5eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑚𝑍𝑚 ∈ ℤ)
168167peano2zd 12674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑚𝑍 → (𝑚 + 1) ∈ ℤ)
169 1z 12597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 1 ∈ ℤ
170 fzsubel 13542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) ↔ (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
171170biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
172169, 171mpanr2 701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
17349, 172mpanl1 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 + 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
174173ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚 + 1) ∈ ℤ → (𝑥 ∈ ℤ → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
175168, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → (𝑥 ∈ ℤ → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
176175com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 ∈ ℤ → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
177176imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 ∈ ℤ → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
178165, 177mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))
17946recni 11233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑀 ∈ ℂ
180 ax-1cn 11172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1 ∈ ℂ
181179, 180pncan3oi 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑀 + 1) − 1) = 𝑀
182181a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑀 + 1) − 1) = 𝑀)
183167zcnd 12672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍𝑚 ∈ ℂ)
184 pncan 11471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
185183, 180, 184sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑚 + 1) − 1) = 𝑚)
186182, 185oveq12d 7430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑚𝑍 → (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑀...𝑚))
187186adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑀...𝑚))
188178, 187eleqtrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 − 1) ∈ (𝑀...𝑚))
189 ffvelcdm 7083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ (𝑥 − 1) ∈ (𝑀...𝑚)) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
190188, 189sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ (𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
191190anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑔:(𝑀...𝑚)⟶𝐴𝑚𝑍) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
192191ancom1s 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
193163, 192eqeltrd 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴)
194193ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
195194adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
196152, 195jaod 856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → ((𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
197148, 196sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
198197ralrimiv 3144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → ∀𝑥 ∈ (𝑀...(𝑚 + 1))if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴)
199 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))
200199fmpt 7111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑥 ∈ (𝑀...(𝑚 + 1))if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴 ↔ (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
201198, 200sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
202201adantlll 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
2032023ad2antr1 1187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
204 eluzfz1 13513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑚 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑚 + 1)))
205144, 204syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑚 + 1)))
206205, 5eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚𝑍𝑀 ∈ (𝑀...(𝑚 + 1)))
207 vex 3477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑐 ∈ V
208149, 199, 207fvmpt 6998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
209206, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
210209ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
211 eluzfz2 13514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚 + 1) ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
212144, 211syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
213212, 5eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
214 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = (𝑚 + 1) → (𝑥 = 𝑀 ↔ (𝑚 + 1) = 𝑀))
215 fvoveq1 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = (𝑚 + 1) → (𝑔‘(𝑥 − 1)) = (𝑔‘((𝑚 + 1) − 1)))
216214, 215ifbieq2d 4554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑚 + 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
217 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑔‘((𝑚 + 1) − 1)) ∈ V
218207, 217ifex 4578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))) ∈ V
219216, 199, 218fvmpt 6998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑚 + 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
220213, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
221 eluzle 12840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑚 ∈ (ℤ𝑀) → 𝑀𝑚)
222221, 5eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍𝑀𝑚)
223 zleltp1 12618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀𝑚𝑀 < (𝑚 + 1)))
2242, 167, 223sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍 → (𝑀𝑚𝑀 < (𝑚 + 1)))
225222, 224mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚𝑍𝑀 < (𝑚 + 1))
226 ltne 11316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑀 ∈ ℝ ∧ 𝑀 < (𝑚 + 1)) → (𝑚 + 1) ≠ 𝑀)
22746, 225, 226sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚𝑍 → (𝑚 + 1) ≠ 𝑀)
228227neneqd 2944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → ¬ (𝑚 + 1) = 𝑀)
229228iffalsed 4539 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))) = (𝑔‘((𝑚 + 1) − 1)))
230185fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → (𝑔‘((𝑚 + 1) − 1)) = (𝑔𝑚))
231220, 229, 2303eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = (𝑔𝑚))
232231sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚𝑍 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃[(𝑔𝑚) / 𝑎]𝜃))
233232biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚𝑍[(𝑔𝑚) / 𝑎]𝜃) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
234233ad2ant2l 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
2352343ad2antr2 1188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
236 eluzp1p1 12855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (ℤ‘(𝑀 + 1)))
237236, 5eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ‘(𝑀 + 1)))
23844fveq2i 6894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (ℤ𝑁) = (ℤ‘(𝑀 + 1))
239237, 238eleqtrrdi 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ𝑁))
240 elfzp12 13585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 + 1) ∈ (ℤ𝑁) → (𝑗 ∈ (𝑁...(𝑚 + 1)) ↔ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))))
241239, 240syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍 → (𝑗 ∈ (𝑁...(𝑚 + 1)) ↔ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))))
242241biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚𝑍𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
243242adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
244243adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
245 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = 𝑁 → (𝑗 − 1) = (𝑁 − 1))
24644oveq1i 7422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 − 1) = ((𝑀 + 1) − 1)
247246, 181eqtri 2759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑁 − 1) = 𝑀
248245, 247eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 = 𝑁 → (𝑗 − 1) = 𝑀)
249248fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑗 = 𝑁 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
250249ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
251209adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
252250, 251eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = 𝑐)
25344eqeq2i 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = 𝑁𝑗 = (𝑀 + 1))
254 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = (𝑀 + 1) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
255253, 254sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 = 𝑁 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
256255ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
25746, 154, 47ltleii 11342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑀 ≤ (𝑀 + 1)
258 eluz2 12833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑀 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)))
2592, 49, 257, 258mpbir3an 1340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 + 1) ∈ (ℤ𝑀)
260 fzss1 13545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
261259, 260ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑀 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
262 eluzfz1 13513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑚))
263262, 5eleq2s 2850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚𝑍𝑀 ∈ (𝑀...𝑚))
264 fzaddel 13540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
2652, 169, 264mpanr12 702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
2662, 167, 265sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚𝑍 → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
267263, 266mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑚𝑍 → (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1)))
268261, 267sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑚𝑍 → (𝑀 + 1) ∈ (𝑀...(𝑚 + 1)))
269 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑥 = (𝑀 + 1) → (𝑥 = 𝑀 ↔ (𝑀 + 1) = 𝑀))
270 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = (𝑀 + 1) → (𝑥 − 1) = ((𝑀 + 1) − 1))
271270, 181eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑥 = (𝑀 + 1) → (𝑥 − 1) = 𝑀)
272271fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑥 = (𝑀 + 1) → (𝑔‘(𝑥 − 1)) = (𝑔𝑀))
273269, 272ifbieq2d 4554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = (𝑀 + 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
274 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑔𝑀) ∈ V
275207, 274ifex 4578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) ∈ V
276273, 199, 275fvmpt 6998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑀 + 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
277268, 276syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
27846, 47gtneii 11331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑀 + 1) ≠ 𝑀
279 ifnefalse 4540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑀 + 1) ≠ 𝑀 → if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) = (𝑔𝑀))
280278, 279ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) = (𝑔𝑀)
281277, 280eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = (𝑔𝑀))
282281adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = (𝑔𝑀))
283 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → (𝑔𝑀) = 𝑑)
284256, 282, 2833eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = 𝑑)
285284sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[𝑑 / 𝑏]𝜑))
286252, 285sbceqbid 3784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[𝑐 / 𝑎][𝑑 / 𝑏]𝜑))
287286biimparc 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (([𝑐 / 𝑎][𝑑 / 𝑏]𝜑 ∧ (𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
288287anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
289288anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ (𝑔𝑀) = 𝑑) ∧ 𝑗 = 𝑁) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
290289adantlrr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 = 𝑁) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
291 elfzelz 13506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → 𝑗 ∈ ℤ)
292291adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ ℤ)
29344, 49eqeltri 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑁 ∈ ℤ
294 peano2z 12608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
295293, 294ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 + 1) ∈ ℤ
296 fzsubel 13542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
297296biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
298169, 297mpanr2 701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
299298ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) → (𝑗 ∈ ℤ → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
300295, 168, 299sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → (𝑗 ∈ ℤ → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
301300com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 ∈ ℤ → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
302301imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 ∈ ℤ → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
303292, 302mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))
304293zrei 12569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑁 ∈ ℝ
305304recni 11233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑁 ∈ ℂ
306305, 180pncan3oi 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑁 + 1) − 1) = 𝑁
307306a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑁 + 1) − 1) = 𝑁)
308307, 185oveq12d 7430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑚𝑍 → (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑁...𝑚))
309308adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑁...𝑚))
310303, 309eleqtrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑁...𝑚))
311 fvoveq1 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = (𝑗 − 1) → (𝑔‘(𝑘 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
312 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑘 = (𝑗 − 1) → (𝑔𝑘) = (𝑔‘(𝑗 − 1)))
313312sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = (𝑗 − 1) → ([(𝑔𝑘) / 𝑏]𝜑[(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
314311, 313sbceqbid 3784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑘 = (𝑗 − 1) → ([(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑[(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
315314rspcva 3610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑗 − 1) ∈ (𝑁...𝑚) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑)
316310, 315sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑)
31744, 259eqeltri 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑁 ∈ (ℤ𝑀)
318 fzss1 13545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 ∈ (ℤ𝑀) → (𝑁...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
319317, 318ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑁...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
320 fzssp1 13549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁...𝑚) ⊆ (𝑁...(𝑚 + 1))
321320, 310sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑁...(𝑚 + 1)))
322319, 321sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑀...(𝑚 + 1)))
323 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = (𝑗 − 1) → (𝑥 = 𝑀 ↔ (𝑗 − 1) = 𝑀))
324 fvoveq1 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = (𝑗 − 1) → (𝑔‘(𝑥 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
325323, 324ifbieq2d 4554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑥 = (𝑗 − 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
326 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑔‘((𝑗 − 1) − 1)) ∈ V
327207, 326ifex 4578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))) ∈ V
328325, 199, 327fvmpt 6998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑗 − 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
329322, 328syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
330154ltp1i 12123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 + 1) < ((𝑀 + 1) + 1)
33144oveq1i 7422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑁 + 1) = ((𝑀 + 1) + 1)
332330, 331breqtrri 5175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑀 + 1) < (𝑁 + 1)
333304, 153readdcli 11234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑁 + 1) ∈ ℝ
334154, 333ltnlei 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑀 + 1) < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ (𝑀 + 1))
335332, 334mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ¬ (𝑁 + 1) ≤ (𝑀 + 1)
336291zcnd 12672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → 𝑗 ∈ ℂ)
337 subadd 11468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
338180, 179, 337mp3an23 1452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ℂ → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
339336, 338syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
340 eqcom 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((1 + 𝑀) = 𝑗𝑗 = (1 + 𝑀))
341180, 179addcomi 11410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (1 + 𝑀) = (𝑀 + 1)
342341eqeq2i 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = (1 + 𝑀) ↔ 𝑗 = (𝑀 + 1))
343340, 342bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((1 + 𝑀) = 𝑗𝑗 = (𝑀 + 1))
344 eleq1 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑗 = (𝑀 + 1) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ (𝑀 + 1) ∈ ((𝑁 + 1)...(𝑚 + 1))))
345 elfzle1 13509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝑀 + 1) ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ (𝑀 + 1))
346344, 345syl6bi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = (𝑀 + 1) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ (𝑀 + 1)))
347346com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 = (𝑀 + 1) → (𝑁 + 1) ≤ (𝑀 + 1)))
348343, 347biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((1 + 𝑀) = 𝑗 → (𝑁 + 1) ≤ (𝑀 + 1)))
349339, 348sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((𝑗 − 1) = 𝑀 → (𝑁 + 1) ≤ (𝑀 + 1)))
350335, 349mtoi 198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ¬ (𝑗 − 1) = 𝑀)
351350adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ¬ (𝑗 − 1) = 𝑀)
352351iffalsed 4539 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))) = (𝑔‘((𝑗 − 1) − 1)))
353329, 352eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
354 peano2uz 12890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
355 fzss1 13545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
356317, 354, 355mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑁 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
357 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))
358356, 357sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ (𝑀...(𝑚 + 1)))
359 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = 𝑗 → (𝑥 = 𝑀𝑗 = 𝑀))
360 fvoveq1 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = 𝑗 → (𝑔‘(𝑥 − 1)) = (𝑔‘(𝑗 − 1)))
361359, 360ifbieq2d 4554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = 𝑗 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
362 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑔‘(𝑗 − 1)) ∈ V
363207, 362ifex 4578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))) ∈ V
364361, 199, 363fvmpt 6998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
365358, 364syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
36647, 44breqtrri 5175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑀 < 𝑁
367304ltp1i 12123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑁 < (𝑁 + 1)
36846, 304, 333lttri 11345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 < 𝑁𝑁 < (𝑁 + 1)) → 𝑀 < (𝑁 + 1))
369366, 367, 368mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 𝑀 < (𝑁 + 1)
37046, 333ltnlei 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑀)
371369, 370mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ¬ (𝑁 + 1) ≤ 𝑀
372 eleq1 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = 𝑀 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ 𝑀 ∈ ((𝑁 + 1)...(𝑚 + 1))))
373 elfzle1 13509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑀 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ 𝑀)
374372, 373syl6bi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 = 𝑀 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ 𝑀))
375374com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 = 𝑀 → (𝑁 + 1) ≤ 𝑀))
376371, 375mtoi 198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ¬ 𝑗 = 𝑀)
377376adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ¬ 𝑗 = 𝑀)
378377iffalsed 4539 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))) = (𝑔‘(𝑗 − 1)))
379365, 378eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = (𝑔‘(𝑗 − 1)))
380379sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
381353, 380sbceqbid 3784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
382381biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
383316, 382syldan 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
384383an32s 649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
385384adantlrl 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
386385adantlll 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
387290, 386jaodan 955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
388244, 387syldan 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
389388ralrimiva 3145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑗 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
390 fvoveq1 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 = 𝑘 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)))
391 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑗 = 𝑘 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘))
392391sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 = 𝑘 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
393390, 392sbceqbid 3784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 = 𝑘 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
394393cbvralvw 3233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∀𝑗 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
395389, 394sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
396395adantllr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
397396adantrlr 720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
3983973adantr1 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
399 ovex 7445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀...(𝑚 + 1)) ∈ V
400399mptex 7227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) ∈ V
401 feq1 6698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ↔ (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴))
402 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓𝑀) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
403402eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ((𝑓𝑀) = 𝑐 ↔ ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐))
404 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓‘(𝑚 + 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)))
405404sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓‘(𝑚 + 1)) / 𝑎]𝜃[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃))
406403, 405anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ↔ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)))
407 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓‘(𝑘 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)))
408 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓𝑘) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘))
409408sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓𝑘) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
410407, 409sbceqbid 3784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
411113, 410bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝜒[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
412411ralbidv 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
413401, 406, 4123anbi123d 1435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ((𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴 ∧ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)))
414400, 413spcev 3596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴 ∧ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
415203, 210, 235, 398, 414syl121anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
416415ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
417143, 416chvarvv 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
418133, 417chvarvv 2001 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
419418adantlrr 718 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
420419adantlll 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
421420imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
422 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝑀...𝑛) = (𝑀...(𝑚 + 1)))
423422feq2d 6703 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...(𝑚 + 1))⟶𝐴))
424 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = (𝑚 + 1) → (𝑓𝑛) = (𝑓‘(𝑚 + 1)))
425424sbceq1d 3782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = (𝑚 + 1) → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃))
42638, 425bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝜏[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃))
427426anbi2d 628 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (((𝑓𝑀) = 𝑎𝜏) ↔ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃)))
428 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝑁...𝑛) = (𝑁...(𝑚 + 1)))
429428raleqdv 3324 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
430423, 427, 4293anbi123d 1435 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = (𝑚 + 1) → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
431430exbidv 1923 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = (𝑚 + 1) → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
432431rspcev 3612 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 + 1) ∈ 𝑍 ∧ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
433125, 421, 432syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
434433ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
435434exlimdv 1935 . . . . . . . . . . . . . . . . . . . 20 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → (∃𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
436435rexlimdva 3154 . . . . . . . . . . . . . . . . . . 19 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
437123, 436biimtrid 241 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
43873, 88, 4373syld 60 . . . . . . . . . . . . . . . . 17 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
439438an42s 658 . . . . . . . . . . . . . . . 16 (((𝜂𝑎𝐴) ∧ (𝑏𝐴𝜑)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
440439rexlimdvaa 3155 . . . . . . . . . . . . . . 15 ((𝜂𝑎𝐴) → (∃𝑏𝐴 𝜑 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))))
441440imp 406 . . . . . . . . . . . . . 14 (((𝜂𝑎𝐴) ∧ ∃𝑏𝐴 𝜑) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
442 fdc.10 . . . . . . . . . . . . . 14 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
44365, 441, 442mpjaodan 956 . . . . . . . . . . . . 13 ((𝜂𝑎𝐴) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
444138anbi1d 629 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑎 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝑎𝜏)))
4454443anbi2d 1440 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑎 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
446445exbidv 1923 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑎 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
447446rexbidv 3177 . . . . . . . . . . . . . . 15 (𝑐 = 𝑎 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
448447elrab3 3684 . . . . . . . . . . . . . 14 (𝑎𝐴 → (𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
449448adantl 481 . . . . . . . . . . . . 13 ((𝜂𝑎𝐴) → (𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
450443, 449sylibrd 259 . . . . . . . . . . . 12 ((𝜂𝑎𝐴) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
451450ex 412 . . . . . . . . . . 11 (𝜂 → (𝑎𝐴 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
452451com23 86 . . . . . . . . . 10 (𝜂 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → (𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
453 eldif 3958 . . . . . . . . . . . 12 (𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
454453notbii 320 . . . . . . . . . . 11 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ ¬ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
455 iman 401 . . . . . . . . . . 11 ((𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ ¬ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
456454, 455bitr4i 278 . . . . . . . . . 10 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ (𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
457452, 456imbitrrdi 251 . . . . . . . . 9 (𝜂 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ¬ 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
458457con2d 134 . . . . . . . 8 (𝜂 → (𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
459458imp 406 . . . . . . 7 ((𝜂𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
460459nrexdv 3148 . . . . . 6 (𝜂 → ¬ ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
461 df-ne 2940 . . . . . . 7 ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ ↔ ¬ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
462 fdc.9 . . . . . . . 8 (𝜂𝑅 Fr 𝐴)
463 difss 4131 . . . . . . . 8 (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴
464 fdc.1 . . . . . . . . . . 11 𝐴 ∈ V
465 difexg 5327 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V)
466464, 465ax-mp 5 . . . . . . . . . 10 (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V
467 fri 5636 . . . . . . . . . 10 ((((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V ∧ 𝑅 Fr 𝐴) ∧ ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅)) → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
468466, 467mpanl1 697 . . . . . . . . 9 ((𝑅 Fr 𝐴 ∧ ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅)) → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
469468expr 456 . . . . . . . 8 ((𝑅 Fr 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴) → ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
470462, 463, 469sylancl 585 . . . . . . 7 (𝜂 → ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
471461, 470biimtrrid 242 . . . . . 6 (𝜂 → (¬ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
472460, 471mt3d 148 . . . . 5 (𝜂 → (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
473 ssdif0 4363 . . . . 5 (𝐴 ⊆ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
474472, 473sylibr 233 . . . 4 (𝜂𝐴 ⊆ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
47576a1i 11 . . . 4 (𝜂 → {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴)
476474, 475eqssd 3999 . . 3 (𝜂𝐴 = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
477 rabid2 3463 . . 3 (𝐴 = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
478476, 477sylib 217 . 2 (𝜂 → ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
479 eqeq2 2743 . . . . . . 7 (𝑐 = 𝐶 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝐶))
480479anbi1d 629 . . . . . 6 (𝑐 = 𝐶 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝐶𝜏)))
4814803anbi2d 1440 . . . . 5 (𝑐 = 𝐶 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
482481exbidv 1923 . . . 4 (𝑐 = 𝐶 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
483482rexbidv 3177 . . 3 (𝑐 = 𝐶 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
484483rspcva 3610 . 2 ((𝐶𝐴 ∧ ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
4851, 478, 484syl2anc 583 1 (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wne 2939  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  [wsbc 3777  cdif 3945  wss 3948  c0 4322  ifcif 4528  {csn 4628  cop 4634   class class class wbr 5148  cmpt 5231   Fr wfr 5628  wf 6539  cfv 6543  (class class class)co 7412  cc 11112  cr 11113  1c1 11115   + caddc 11117   < clt 11253  cle 11254  cmin 11449  cz 12563  cuz 12827  ...cfz 13489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490
This theorem is referenced by:  fdc1  36918
  Copyright terms: Public domain W3C validator