Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdc Structured version   Visualization version   GIF version

Theorem fdc 37731
Description: Finite version of dependent choice. Construct a function whose value depends on the previous function value, except at a final point at which no new value can be chosen. The final hypothesis ensures that the process will terminate. The proof does not use the Axiom of Choice. (Contributed by Jeff Madsen, 18-Jun-2010.)
Hypotheses
Ref Expression
fdc.1 𝐴 ∈ V
fdc.2 𝑀 ∈ ℤ
fdc.3 𝑍 = (ℤ𝑀)
fdc.4 𝑁 = (𝑀 + 1)
fdc.5 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
fdc.6 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
fdc.7 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
fdc.8 (𝜂𝐶𝐴)
fdc.9 (𝜂𝑅 Fr 𝐴)
fdc.10 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
fdc.11 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
Assertion
Ref Expression
fdc (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Distinct variable groups:   𝐶,𝑓,𝑛   𝐴,𝑎,𝑏,𝑓,𝑛   𝑀,𝑎,𝑏,𝑓,𝑘,𝑛   𝑍,𝑎,𝑏,𝑛   𝑁,𝑎,𝑏,𝑓,𝑘,𝑛   𝑅,𝑎,𝑏   𝜑,𝑓,𝑘   𝜓,𝑎   𝜒,𝑎,𝑏,𝑛   𝜃,𝑓,𝑛   𝜏,𝑎,𝑏   𝜂,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑛,𝑎,𝑏)   𝜓(𝑓,𝑘,𝑛,𝑏)   𝜒(𝑓,𝑘)   𝜃(𝑘,𝑎,𝑏)   𝜏(𝑓,𝑘,𝑛)   𝜂(𝑓,𝑘,𝑛)   𝐴(𝑘)   𝐶(𝑘,𝑎,𝑏)   𝑅(𝑓,𝑘,𝑛)   𝑍(𝑓,𝑘)

Proof of Theorem fdc
Dummy variables 𝑐 𝑑 𝑔 𝑚 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fdc.8 . 2 (𝜂𝐶𝐴)
2 fdc.2 . . . . . . . . . . . . . . . . . . 19 𝑀 ∈ ℤ
3 uzid 12890 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
42, 3ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑀 ∈ (ℤ𝑀)
5 fdc.3 . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑀)
64, 5eleqtrri 2837 . . . . . . . . . . . . . . . . 17 𝑀𝑍
7 eqid 2734 . . . . . . . . . . . . . . . . . . . . . 22 {⟨𝑀, 𝑎⟩} = {⟨𝑀, 𝑎⟩}
82elexi 3500 . . . . . . . . . . . . . . . . . . . . . . 23 𝑀 ∈ V
9 vex 3481 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 ∈ V
108, 9fsn 7154 . . . . . . . . . . . . . . . . . . . . . 22 ({⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎} ↔ {⟨𝑀, 𝑎⟩} = {⟨𝑀, 𝑎⟩})
117, 10mpbir 231 . . . . . . . . . . . . . . . . . . . . 21 {⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎}
12 snssi 4812 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝐴 → {𝑎} ⊆ 𝐴)
13 fss 6752 . . . . . . . . . . . . . . . . . . . . 21 (({⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎} ∧ {𝑎} ⊆ 𝐴) → {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
1411, 12, 13sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐴 → {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
15 fzsn 13602 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
162, 15ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (𝑀...𝑀) = {𝑀}
1716feq2i 6728 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ↔ {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
1814, 17sylibr 234 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐴 → {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴)
1918adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴)
208, 9fvsn 7200 . . . . . . . . . . . . . . . . . . 19 ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎
2120a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎)
22 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → 𝜃)
23 snex 5441 . . . . . . . . . . . . . . . . . . 19 {⟨𝑀, 𝑎⟩} ∈ V
24 feq1 6716 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓:(𝑀...𝑀)⟶𝐴 ↔ {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴))
25 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓𝑀) = ({⟨𝑀, 𝑎⟩}‘𝑀))
2625eqeq1d 2736 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {⟨𝑀, 𝑎⟩} → ((𝑓𝑀) = 𝑎 ↔ ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎))
2725, 20eqtrdi 2790 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓𝑀) = 𝑎)
28 sbceq2a 3802 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑀) = 𝑎 → ([(𝑓𝑀) / 𝑎]𝜃𝜃))
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {⟨𝑀, 𝑎⟩} → ([(𝑓𝑀) / 𝑎]𝜃𝜃))
3026, 29anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = {⟨𝑀, 𝑎⟩} → (((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ↔ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃)))
3124, 30anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑓 = {⟨𝑀, 𝑎⟩} → ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)) ↔ ({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ∧ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃))))
3223, 31spcev 3605 . . . . . . . . . . . . . . . . . 18 (({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ∧ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃)) → ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
3319, 21, 22, 32syl12anc 837 . . . . . . . . . . . . . . . . 17 ((𝑎𝐴𝜃) → ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
34 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
3534feq2d 6722 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑀)⟶𝐴))
36 fvex 6919 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓𝑛) ∈ V
37 fdc.7 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
3836, 37sbcie 3834 . . . . . . . . . . . . . . . . . . . . . . 23 ([(𝑓𝑛) / 𝑎]𝜃𝜏)
39 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑀 → (𝑓𝑛) = (𝑓𝑀))
4039sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑀 → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓𝑀) / 𝑎]𝜃))
4138, 40bitr3id 285 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝜏[(𝑓𝑀) / 𝑎]𝜃))
4241anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (((𝑓𝑀) = 𝑎𝜏) ↔ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
43 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑀 → (𝑁...𝑛) = (𝑁...𝑀))
44 fdc.4 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑁 = (𝑀 + 1)
4544oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁...𝑀) = ((𝑀 + 1)...𝑀)
462zrei 12616 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 ∈ ℝ
4746ltp1i 12169 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑀 < (𝑀 + 1)
48 peano2z 12655 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
492, 48ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 + 1) ∈ ℤ
50 fzn 13576 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑀) = ∅))
5149, 2, 50mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑀) = ∅)
5247, 51mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 + 1)...𝑀) = ∅
5345, 52eqtri 2762 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁...𝑀) = ∅
5443, 53eqtrdi 2790 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝑁...𝑛) = ∅)
5554raleqdv 3323 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ ∅ 𝜒))
5635, 42, 553anbi123d 1435 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑀 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒)))
57 ral0 4518 . . . . . . . . . . . . . . . . . . . . 21 𝑘 ∈ ∅ 𝜒
58 df-3an 1088 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒) ↔ ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)) ∧ ∀𝑘 ∈ ∅ 𝜒))
5957, 58mpbiran2 710 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
6056, 59bitrdi 287 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑀 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))))
6160exbidv 1918 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑀 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))))
6261rspcev 3621 . . . . . . . . . . . . . . . . 17 ((𝑀𝑍 ∧ ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
636, 33, 62sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑎𝐴𝜃) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6463adantll 714 . . . . . . . . . . . . . . 15 (((𝜂𝑎𝐴) ∧ 𝜃) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6564a1d 25 . . . . . . . . . . . . . 14 (((𝜂𝑎𝐴) ∧ 𝜃) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
66 fdc.11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
67 breq1 5150 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑏 → (𝑑𝑅𝑎𝑏𝑅𝑎))
6867rspcev 3621 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∧ 𝑏𝑅𝑎) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎)
6968expcom 413 . . . . . . . . . . . . . . . . . . . . 21 (𝑏𝑅𝑎 → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎))
7066, 69syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎))
71 dfrex2 3070 . . . . . . . . . . . . . . . . . . . 20 (∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎 ↔ ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
7270, 71imbitrdi 251 . . . . . . . . . . . . . . . . . . 19 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
7372con2d 134 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
74 eldif 3972 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ (𝑏𝐴 ∧ ¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
7574simplbi2 500 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐴 → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → 𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))))
76 ssrab2 4089 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴
77 dfss4 4274 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
7876, 77mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}
7978eleq2i 2830 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ 𝑏 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
80 eqeq2 2746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑏 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝑏))
8180anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑏 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝑏𝜏)))
82813anbi2d 1440 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑏 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8382exbidv 1918 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = 𝑏 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8483rexbidv 3176 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = 𝑏 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8584elrab3 3695 . . . . . . . . . . . . . . . . . . . . 21 (𝑏𝐴 → (𝑏 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8679, 85bitrid 283 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐴 → (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8775, 86sylibd 239 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐴 → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8887ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
89 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑀...𝑛) = (𝑀...𝑚))
9089feq2d 6722 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑚)⟶𝐴))
91 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
9291sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓𝑚) / 𝑎]𝜃))
9338, 92bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝜏[(𝑓𝑚) / 𝑎]𝜃))
9493anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (((𝑓𝑀) = 𝑏𝜏) ↔ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃)))
95 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑁...𝑛) = (𝑁...𝑚))
9695raleqdv 3323 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ (𝑁...𝑚)𝜒))
9790, 94, 963anbi123d 1435 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒)))
9897exbidv 1918 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒)))
9998cbvrexvw 3235 . . . . . . . . . . . . . . . . . . . 20 (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑚𝑍𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒))
100 feq1 6716 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝑓:(𝑀...𝑚)⟶𝐴𝑔:(𝑀...𝑚)⟶𝐴))
101 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → (𝑓𝑀) = (𝑔𝑀))
102101eqeq1d 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → ((𝑓𝑀) = 𝑏 ↔ (𝑔𝑀) = 𝑏))
103 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → (𝑓𝑚) = (𝑔𝑚))
104103sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → ([(𝑓𝑚) / 𝑎]𝜃[(𝑔𝑚) / 𝑎]𝜃))
105102, 104anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ↔ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃)))
106 fvex 6919 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓‘(𝑘 − 1)) ∈ V
107 fdc.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
108107sbcbidv 3850 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓‘(𝑘 − 1)) → ([(𝑓𝑘) / 𝑏]𝜑[(𝑓𝑘) / 𝑏]𝜓))
109106, 108sbcie 3834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[(𝑓𝑘) / 𝑏]𝜓)
110 fvex 6919 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓𝑘) ∈ V
111 fdc.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
112110, 111sbcie 3834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([(𝑓𝑘) / 𝑏]𝜓𝜒)
113109, 112bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . 25 ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑𝜒)
114 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑔 → (𝑓‘(𝑘 − 1)) = (𝑔‘(𝑘 − 1)))
115 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑔 → (𝑓𝑘) = (𝑔𝑘))
116115sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑔 → ([(𝑓𝑘) / 𝑏]𝜑[(𝑔𝑘) / 𝑏]𝜑))
117114, 116sbceqbid 3797 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
118113, 117bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → (𝜒[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
119118ralbidv 3175 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (∀𝑘 ∈ (𝑁...𝑚)𝜒 ↔ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
120100, 105, 1193anbi123d 1435 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑔 → ((𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)))
121120cbvexvw 2033 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ ∃𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
122121rexbii 3091 . . . . . . . . . . . . . . . . . . . 20 (∃𝑚𝑍𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ ∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
12399, 122bitri 275 . . . . . . . . . . . . . . . . . . 19 (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
1245peano2uzs 12941 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚𝑍 → (𝑚 + 1) ∈ 𝑍)
125124ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → (𝑚 + 1) ∈ 𝑍)
126 sbceq2a 3802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑑 = 𝑏 → ([𝑑 / 𝑏]𝜑𝜑))
127126anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 = 𝑏 → (([𝑑 / 𝑏]𝜑𝑎𝐴) ↔ (𝜑𝑎𝐴)))
128127anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 = 𝑏 → ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) ↔ ((𝜑𝑎𝐴) ∧ 𝑚𝑍)))
129 eqeq2 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑑 = 𝑏 → ((𝑔𝑀) = 𝑑 ↔ (𝑔𝑀) = 𝑏))
130129anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑑 = 𝑏 → (((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ↔ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃)))
1311303anbi2d 1440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 = 𝑏 → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) ↔ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)))
132131imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 = 𝑏 → (((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) ↔ ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))))
133128, 132imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 = 𝑏 → (((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))) ↔ (((𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))))
134 sbceq2a 3802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → ([𝑐 / 𝑎][𝑑 / 𝑏]𝜑[𝑑 / 𝑏]𝜑))
135 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → (𝑐𝐴𝑎𝐴))
136134, 135anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ↔ ([𝑑 / 𝑏]𝜑𝑎𝐴)))
137136anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ↔ (([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍)))
138 eqeq2 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑎 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝑎))
139138anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑎 → (((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ↔ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃)))
1401393anbi2d 1440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → ((𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
141140exbidv 1918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
142141imbi2d 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → (((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) ↔ ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))))
143137, 142imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = 𝑎 → (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))) ↔ ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))))
144 peano2uz 12940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (ℤ𝑀))
145144, 5eleq2s 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ𝑀))
146 elfzp12 13639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚 + 1) ∈ (ℤ𝑀) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
147145, 146syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
148147ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
149 iftrue 4536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = 𝑐)
150149eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = 𝑀 → (if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴𝑐𝐴))
151150biimprcd 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐𝐴 → (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
152151ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
153 1re 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1 ∈ ℝ
15446, 153readdcli 11273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑀 + 1) ∈ ℝ
15546, 154ltnlei 11379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀)
15647, 155mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ¬ (𝑀 + 1) ≤ 𝑀
157 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = 𝑀 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) ↔ 𝑀 ∈ ((𝑀 + 1)...(𝑚 + 1))))
158 elfzle1 13563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑀 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑀 + 1) ≤ 𝑀)
159157, 158biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥 = 𝑀 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑀 + 1) ≤ 𝑀))
160159com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 = 𝑀 → (𝑀 + 1) ≤ 𝑀))
161156, 160mtoi 199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → ¬ 𝑥 = 𝑀)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → ¬ 𝑥 = 𝑀)
163162iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = (𝑔‘(𝑥 − 1)))
164 elfzelz 13560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → 𝑥 ∈ ℤ)
165164adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → 𝑥 ∈ ℤ)
166 eluzelz 12885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
167166, 5eleq2s 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑚𝑍𝑚 ∈ ℤ)
168167peano2zd 12722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑚𝑍 → (𝑚 + 1) ∈ ℤ)
169 1z 12644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 1 ∈ ℤ
170 fzsubel 13596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) ↔ (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
171170biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
172169, 171mpanr2 704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
17349, 172mpanl1 700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 + 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
174173ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚 + 1) ∈ ℤ → (𝑥 ∈ ℤ → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
175168, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → (𝑥 ∈ ℤ → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
176175com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 ∈ ℤ → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
177176imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 ∈ ℤ → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
178165, 177mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))
17946recni 11272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑀 ∈ ℂ
180 ax-1cn 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1 ∈ ℂ
181179, 180pncan3oi 11521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑀 + 1) − 1) = 𝑀
182181a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑀 + 1) − 1) = 𝑀)
183167zcnd 12720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍𝑚 ∈ ℂ)
184 pncan 11511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
185183, 180, 184sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑚 + 1) − 1) = 𝑚)
186182, 185oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑚𝑍 → (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑀...𝑚))
187186adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑀...𝑚))
188178, 187eleqtrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 − 1) ∈ (𝑀...𝑚))
189 ffvelcdm 7100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ (𝑥 − 1) ∈ (𝑀...𝑚)) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
190188, 189sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ (𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
191190anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑔:(𝑀...𝑚)⟶𝐴𝑚𝑍) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
192191ancom1s 653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
193163, 192eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴)
194193ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
195194adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
196152, 195jaod 859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → ((𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
197148, 196sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
198197ralrimiv 3142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → ∀𝑥 ∈ (𝑀...(𝑚 + 1))if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴)
199 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))
200199fmpt 7129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑥 ∈ (𝑀...(𝑚 + 1))if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴 ↔ (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
201198, 200sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
202201adantlll 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
2032023ad2antr1 1187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
204 eluzfz1 13567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑚 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑚 + 1)))
205144, 204syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑚 + 1)))
206205, 5eleq2s 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚𝑍𝑀 ∈ (𝑀...(𝑚 + 1)))
207 vex 3481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑐 ∈ V
208149, 199, 207fvmpt 7015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
209206, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
210209ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
211 eluzfz2 13568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚 + 1) ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
212144, 211syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
213212, 5eleq2s 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
214 eqeq1 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = (𝑚 + 1) → (𝑥 = 𝑀 ↔ (𝑚 + 1) = 𝑀))
215 fvoveq1 7453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = (𝑚 + 1) → (𝑔‘(𝑥 − 1)) = (𝑔‘((𝑚 + 1) − 1)))
216214, 215ifbieq2d 4556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑚 + 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
217 fvex 6919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑔‘((𝑚 + 1) − 1)) ∈ V
218207, 217ifex 4580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))) ∈ V
219216, 199, 218fvmpt 7015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑚 + 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
220213, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
221 eluzle 12888 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑚 ∈ (ℤ𝑀) → 𝑀𝑚)
222221, 5eleq2s 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍𝑀𝑚)
223 zleltp1 12665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀𝑚𝑀 < (𝑚 + 1)))
2242, 167, 223sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍 → (𝑀𝑚𝑀 < (𝑚 + 1)))
225222, 224mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚𝑍𝑀 < (𝑚 + 1))
226 ltne 11355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑀 ∈ ℝ ∧ 𝑀 < (𝑚 + 1)) → (𝑚 + 1) ≠ 𝑀)
22746, 225, 226sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚𝑍 → (𝑚 + 1) ≠ 𝑀)
228227neneqd 2942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → ¬ (𝑚 + 1) = 𝑀)
229228iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))) = (𝑔‘((𝑚 + 1) − 1)))
230185fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → (𝑔‘((𝑚 + 1) − 1)) = (𝑔𝑚))
231220, 229, 2303eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = (𝑔𝑚))
232231sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚𝑍 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃[(𝑔𝑚) / 𝑎]𝜃))
233232biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚𝑍[(𝑔𝑚) / 𝑎]𝜃) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
234233ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
2352343ad2antr2 1188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
236 eluzp1p1 12903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (ℤ‘(𝑀 + 1)))
237236, 5eleq2s 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ‘(𝑀 + 1)))
23844fveq2i 6909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (ℤ𝑁) = (ℤ‘(𝑀 + 1))
239237, 238eleqtrrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ𝑁))
240 elfzp12 13639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 + 1) ∈ (ℤ𝑁) → (𝑗 ∈ (𝑁...(𝑚 + 1)) ↔ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))))
241239, 240syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍 → (𝑗 ∈ (𝑁...(𝑚 + 1)) ↔ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))))
242241biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚𝑍𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
243242adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
244243adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
245 oveq1 7437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = 𝑁 → (𝑗 − 1) = (𝑁 − 1))
24644oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 − 1) = ((𝑀 + 1) − 1)
247246, 181eqtri 2762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑁 − 1) = 𝑀
248245, 247eqtrdi 2790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 = 𝑁 → (𝑗 − 1) = 𝑀)
249248fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑗 = 𝑁 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
250249ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
251209adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
252250, 251eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = 𝑐)
25344eqeq2i 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = 𝑁𝑗 = (𝑀 + 1))
254 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = (𝑀 + 1) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
255253, 254sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 = 𝑁 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
256255ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
25746, 154, 47ltleii 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑀 ≤ (𝑀 + 1)
258 eluz2 12881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑀 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)))
2592, 49, 257, 258mpbir3an 1340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 + 1) ∈ (ℤ𝑀)
260 fzss1 13599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
261259, 260ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑀 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
262 eluzfz1 13567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑚))
263262, 5eleq2s 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚𝑍𝑀 ∈ (𝑀...𝑚))
264 fzaddel 13594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
2652, 169, 264mpanr12 705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
2662, 167, 265sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚𝑍 → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
267263, 266mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑚𝑍 → (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1)))
268261, 267sselid 3992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑚𝑍 → (𝑀 + 1) ∈ (𝑀...(𝑚 + 1)))
269 eqeq1 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑥 = (𝑀 + 1) → (𝑥 = 𝑀 ↔ (𝑀 + 1) = 𝑀))
270 oveq1 7437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = (𝑀 + 1) → (𝑥 − 1) = ((𝑀 + 1) − 1))
271270, 181eqtrdi 2790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑥 = (𝑀 + 1) → (𝑥 − 1) = 𝑀)
272271fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑥 = (𝑀 + 1) → (𝑔‘(𝑥 − 1)) = (𝑔𝑀))
273269, 272ifbieq2d 4556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = (𝑀 + 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
274 fvex 6919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑔𝑀) ∈ V
275207, 274ifex 4580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) ∈ V
276273, 199, 275fvmpt 7015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑀 + 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
277268, 276syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
27846, 47gtneii 11370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑀 + 1) ≠ 𝑀
279 ifnefalse 4542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑀 + 1) ≠ 𝑀 → if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) = (𝑔𝑀))
280278, 279ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) = (𝑔𝑀)
281277, 280eqtrdi 2790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = (𝑔𝑀))
282281adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = (𝑔𝑀))
283 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → (𝑔𝑀) = 𝑑)
284256, 282, 2833eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = 𝑑)
285284sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[𝑑 / 𝑏]𝜑))
286252, 285sbceqbid 3797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[𝑐 / 𝑎][𝑑 / 𝑏]𝜑))
287286biimparc 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (([𝑐 / 𝑎][𝑑 / 𝑏]𝜑 ∧ (𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
288287anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
289288anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ (𝑔𝑀) = 𝑑) ∧ 𝑗 = 𝑁) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
290289adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 = 𝑁) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
291 elfzelz 13560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → 𝑗 ∈ ℤ)
292291adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ ℤ)
29344, 49eqeltri 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑁 ∈ ℤ
294 peano2z 12655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
295293, 294ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 + 1) ∈ ℤ
296 fzsubel 13596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
297296biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
298169, 297mpanr2 704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
299298ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) → (𝑗 ∈ ℤ → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
300295, 168, 299sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → (𝑗 ∈ ℤ → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
301300com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 ∈ ℤ → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
302301imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 ∈ ℤ → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
303292, 302mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))
304293zrei 12616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑁 ∈ ℝ
305304recni 11272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑁 ∈ ℂ
306305, 180pncan3oi 11521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑁 + 1) − 1) = 𝑁
307306a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑁 + 1) − 1) = 𝑁)
308307, 185oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑚𝑍 → (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑁...𝑚))
309308adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑁...𝑚))
310303, 309eleqtrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑁...𝑚))
311 fvoveq1 7453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = (𝑗 − 1) → (𝑔‘(𝑘 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
312 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑘 = (𝑗 − 1) → (𝑔𝑘) = (𝑔‘(𝑗 − 1)))
313312sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = (𝑗 − 1) → ([(𝑔𝑘) / 𝑏]𝜑[(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
314311, 313sbceqbid 3797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑘 = (𝑗 − 1) → ([(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑[(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
315314rspcva 3619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑗 − 1) ∈ (𝑁...𝑚) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑)
316310, 315sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑)
31744, 259eqeltri 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑁 ∈ (ℤ𝑀)
318 fzss1 13599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 ∈ (ℤ𝑀) → (𝑁...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
319317, 318ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑁...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
320 fzssp1 13603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁...𝑚) ⊆ (𝑁...(𝑚 + 1))
321320, 310sselid 3992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑁...(𝑚 + 1)))
322319, 321sselid 3992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑀...(𝑚 + 1)))
323 eqeq1 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = (𝑗 − 1) → (𝑥 = 𝑀 ↔ (𝑗 − 1) = 𝑀))
324 fvoveq1 7453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = (𝑗 − 1) → (𝑔‘(𝑥 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
325323, 324ifbieq2d 4556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑥 = (𝑗 − 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
326 fvex 6919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑔‘((𝑗 − 1) − 1)) ∈ V
327207, 326ifex 4580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))) ∈ V
328325, 199, 327fvmpt 7015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑗 − 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
329322, 328syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
330154ltp1i 12169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 + 1) < ((𝑀 + 1) + 1)
33144oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑁 + 1) = ((𝑀 + 1) + 1)
332330, 331breqtrri 5174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑀 + 1) < (𝑁 + 1)
333304, 153readdcli 11273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑁 + 1) ∈ ℝ
334154, 333ltnlei 11379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑀 + 1) < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ (𝑀 + 1))
335332, 334mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ¬ (𝑁 + 1) ≤ (𝑀 + 1)
336291zcnd 12720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → 𝑗 ∈ ℂ)
337 subadd 11508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
338180, 179, 337mp3an23 1452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ℂ → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
339336, 338syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
340 eqcom 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((1 + 𝑀) = 𝑗𝑗 = (1 + 𝑀))
341180, 179addcomi 11449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (1 + 𝑀) = (𝑀 + 1)
342341eqeq2i 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = (1 + 𝑀) ↔ 𝑗 = (𝑀 + 1))
343340, 342bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((1 + 𝑀) = 𝑗𝑗 = (𝑀 + 1))
344 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑗 = (𝑀 + 1) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ (𝑀 + 1) ∈ ((𝑁 + 1)...(𝑚 + 1))))
345 elfzle1 13563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝑀 + 1) ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ (𝑀 + 1))
346344, 345biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = (𝑀 + 1) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ (𝑀 + 1)))
347346com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 = (𝑀 + 1) → (𝑁 + 1) ≤ (𝑀 + 1)))
348343, 347biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((1 + 𝑀) = 𝑗 → (𝑁 + 1) ≤ (𝑀 + 1)))
349339, 348sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((𝑗 − 1) = 𝑀 → (𝑁 + 1) ≤ (𝑀 + 1)))
350335, 349mtoi 199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ¬ (𝑗 − 1) = 𝑀)
351350adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ¬ (𝑗 − 1) = 𝑀)
352351iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))) = (𝑔‘((𝑗 − 1) − 1)))
353329, 352eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
354 peano2uz 12940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
355 fzss1 13599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
356317, 354, 355mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑁 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
357 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))
358356, 357sselid 3992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ (𝑀...(𝑚 + 1)))
359 eqeq1 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = 𝑗 → (𝑥 = 𝑀𝑗 = 𝑀))
360 fvoveq1 7453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = 𝑗 → (𝑔‘(𝑥 − 1)) = (𝑔‘(𝑗 − 1)))
361359, 360ifbieq2d 4556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = 𝑗 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
362 fvex 6919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑔‘(𝑗 − 1)) ∈ V
363207, 362ifex 4580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))) ∈ V
364361, 199, 363fvmpt 7015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
365358, 364syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
36647, 44breqtrri 5174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑀 < 𝑁
367304ltp1i 12169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑁 < (𝑁 + 1)
36846, 304, 333lttri 11384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 < 𝑁𝑁 < (𝑁 + 1)) → 𝑀 < (𝑁 + 1))
369366, 367, 368mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 𝑀 < (𝑁 + 1)
37046, 333ltnlei 11379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑀)
371369, 370mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ¬ (𝑁 + 1) ≤ 𝑀
372 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = 𝑀 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ 𝑀 ∈ ((𝑁 + 1)...(𝑚 + 1))))
373 elfzle1 13563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑀 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ 𝑀)
374372, 373biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 = 𝑀 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ 𝑀))
375374com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 = 𝑀 → (𝑁 + 1) ≤ 𝑀))
376371, 375mtoi 199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ¬ 𝑗 = 𝑀)
377376adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ¬ 𝑗 = 𝑀)
378377iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))) = (𝑔‘(𝑗 − 1)))
379365, 378eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = (𝑔‘(𝑗 − 1)))
380379sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
381353, 380sbceqbid 3797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
382381biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
383316, 382syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
384383an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
385384adantlrl 720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
386385adantlll 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
387290, 386jaodan 959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
388244, 387syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
389388ralrimiva 3143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑗 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
390 fvoveq1 7453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 = 𝑘 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)))
391 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑗 = 𝑘 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘))
392391sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 = 𝑘 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
393390, 392sbceqbid 3797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 = 𝑘 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
394393cbvralvw 3234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∀𝑗 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
395389, 394sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
396395adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
397396adantrlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
3983973adantr1 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
399 ovex 7463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀...(𝑚 + 1)) ∈ V
400399mptex 7242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) ∈ V
401 feq1 6716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ↔ (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴))
402 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓𝑀) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
403402eqeq1d 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ((𝑓𝑀) = 𝑐 ↔ ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐))
404 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓‘(𝑚 + 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)))
405404sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓‘(𝑚 + 1)) / 𝑎]𝜃[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃))
406403, 405anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ↔ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)))
407 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓‘(𝑘 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)))
408 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓𝑘) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘))
409408sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓𝑘) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
410407, 409sbceqbid 3797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
411113, 410bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝜒[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
412411ralbidv 3175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
413401, 406, 4123anbi123d 1435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ((𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴 ∧ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)))
414400, 413spcev 3605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴 ∧ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
415203, 210, 235, 398, 414syl121anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
416415ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
417143, 416chvarvv 1995 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
418133, 417chvarvv 1995 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
419418adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
420419adantlll 718 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
421420imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
422 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝑀...𝑛) = (𝑀...(𝑚 + 1)))
423422feq2d 6722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...(𝑚 + 1))⟶𝐴))
424 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = (𝑚 + 1) → (𝑓𝑛) = (𝑓‘(𝑚 + 1)))
425424sbceq1d 3795 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = (𝑚 + 1) → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃))
42638, 425bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝜏[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃))
427426anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (((𝑓𝑀) = 𝑎𝜏) ↔ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃)))
428 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝑁...𝑛) = (𝑁...(𝑚 + 1)))
429428raleqdv 3323 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
430423, 427, 4293anbi123d 1435 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = (𝑚 + 1) → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
431430exbidv 1918 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = (𝑚 + 1) → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
432431rspcev 3621 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 + 1) ∈ 𝑍 ∧ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
433125, 421, 432syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
434433ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
435434exlimdv 1930 . . . . . . . . . . . . . . . . . . . 20 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → (∃𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
436435rexlimdva 3152 . . . . . . . . . . . . . . . . . . 19 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
437123, 436biimtrid 242 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
43873, 88, 4373syld 60 . . . . . . . . . . . . . . . . 17 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
439438an42s 661 . . . . . . . . . . . . . . . 16 (((𝜂𝑎𝐴) ∧ (𝑏𝐴𝜑)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
440439rexlimdvaa 3153 . . . . . . . . . . . . . . 15 ((𝜂𝑎𝐴) → (∃𝑏𝐴 𝜑 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))))
441440imp 406 . . . . . . . . . . . . . 14 (((𝜂𝑎𝐴) ∧ ∃𝑏𝐴 𝜑) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
442 fdc.10 . . . . . . . . . . . . . 14 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
44365, 441, 442mpjaodan 960 . . . . . . . . . . . . 13 ((𝜂𝑎𝐴) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
444138anbi1d 631 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑎 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝑎𝜏)))
4454443anbi2d 1440 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑎 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
446445exbidv 1918 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑎 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
447446rexbidv 3176 . . . . . . . . . . . . . . 15 (𝑐 = 𝑎 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
448447elrab3 3695 . . . . . . . . . . . . . 14 (𝑎𝐴 → (𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
449448adantl 481 . . . . . . . . . . . . 13 ((𝜂𝑎𝐴) → (𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
450443, 449sylibrd 259 . . . . . . . . . . . 12 ((𝜂𝑎𝐴) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
451450ex 412 . . . . . . . . . . 11 (𝜂 → (𝑎𝐴 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
452451com23 86 . . . . . . . . . 10 (𝜂 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → (𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
453 eldif 3972 . . . . . . . . . . . 12 (𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
454453notbii 320 . . . . . . . . . . 11 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ ¬ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
455 iman 401 . . . . . . . . . . 11 ((𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ ¬ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
456454, 455bitr4i 278 . . . . . . . . . 10 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ (𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
457452, 456imbitrrdi 252 . . . . . . . . 9 (𝜂 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ¬ 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
458457con2d 134 . . . . . . . 8 (𝜂 → (𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
459458imp 406 . . . . . . 7 ((𝜂𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
460459nrexdv 3146 . . . . . 6 (𝜂 → ¬ ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
461 df-ne 2938 . . . . . . 7 ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ ↔ ¬ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
462 fdc.9 . . . . . . . 8 (𝜂𝑅 Fr 𝐴)
463 difss 4145 . . . . . . . 8 (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴
464 fdc.1 . . . . . . . . . . 11 𝐴 ∈ V
465 difexg 5334 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V)
466464, 465ax-mp 5 . . . . . . . . . 10 (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V
467 fri 5645 . . . . . . . . . 10 ((((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V ∧ 𝑅 Fr 𝐴) ∧ ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅)) → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
468466, 467mpanl1 700 . . . . . . . . 9 ((𝑅 Fr 𝐴 ∧ ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅)) → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
469468expr 456 . . . . . . . 8 ((𝑅 Fr 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴) → ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
470462, 463, 469sylancl 586 . . . . . . 7 (𝜂 → ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
471461, 470biimtrrid 243 . . . . . 6 (𝜂 → (¬ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
472460, 471mt3d 148 . . . . 5 (𝜂 → (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
473 ssdif0 4371 . . . . 5 (𝐴 ⊆ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
474472, 473sylibr 234 . . . 4 (𝜂𝐴 ⊆ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
47576a1i 11 . . . 4 (𝜂 → {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴)
476474, 475eqssd 4012 . . 3 (𝜂𝐴 = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
477 rabid2 3467 . . 3 (𝐴 = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
478476, 477sylib 218 . 2 (𝜂 → ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
479 eqeq2 2746 . . . . . . 7 (𝑐 = 𝐶 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝐶))
480479anbi1d 631 . . . . . 6 (𝑐 = 𝐶 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝐶𝜏)))
4814803anbi2d 1440 . . . . 5 (𝑐 = 𝐶 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
482481exbidv 1918 . . . 4 (𝑐 = 𝐶 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
483482rexbidv 3176 . . 3 (𝑐 = 𝐶 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
484483rspcva 3619 . 2 ((𝐶𝐴 ∧ ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
4851, 478, 484syl2anc 584 1 (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  [wsbc 3790  cdif 3959  wss 3962  c0 4338  ifcif 4530  {csn 4630  cop 4636   class class class wbr 5147  cmpt 5230   Fr wfr 5637  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cmin 11489  cz 12610  cuz 12875  ...cfz 13543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544
This theorem is referenced by:  fdc1  37732
  Copyright terms: Public domain W3C validator