Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdc Structured version   Visualization version   GIF version

Theorem fdc 35199
 Description: Finite version of dependent choice. Construct a function whose value depends on the previous function value, except at a final point at which no new value can be chosen. The final hypothesis ensures that the process will terminate. The proof does not use the Axiom of Choice. (Contributed by Jeff Madsen, 18-Jun-2010.)
Hypotheses
Ref Expression
fdc.1 𝐴 ∈ V
fdc.2 𝑀 ∈ ℤ
fdc.3 𝑍 = (ℤ𝑀)
fdc.4 𝑁 = (𝑀 + 1)
fdc.5 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
fdc.6 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
fdc.7 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
fdc.8 (𝜂𝐶𝐴)
fdc.9 (𝜂𝑅 Fr 𝐴)
fdc.10 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
fdc.11 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
Assertion
Ref Expression
fdc (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Distinct variable groups:   𝐶,𝑓,𝑛   𝐴,𝑎,𝑏,𝑓,𝑛   𝑀,𝑎,𝑏,𝑓,𝑘,𝑛   𝑍,𝑎,𝑏,𝑛   𝑁,𝑎,𝑏,𝑓,𝑘,𝑛   𝑅,𝑎,𝑏   𝜑,𝑓,𝑘   𝜓,𝑎   𝜒,𝑎,𝑏,𝑛   𝜃,𝑓,𝑛   𝜏,𝑎,𝑏   𝜂,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑛,𝑎,𝑏)   𝜓(𝑓,𝑘,𝑛,𝑏)   𝜒(𝑓,𝑘)   𝜃(𝑘,𝑎,𝑏)   𝜏(𝑓,𝑘,𝑛)   𝜂(𝑓,𝑘,𝑛)   𝐴(𝑘)   𝐶(𝑘,𝑎,𝑏)   𝑅(𝑓,𝑘,𝑛)   𝑍(𝑓,𝑘)

Proof of Theorem fdc
Dummy variables 𝑐 𝑑 𝑔 𝑚 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fdc.8 . 2 (𝜂𝐶𝐴)
2 fdc.2 . . . . . . . . . . . . . . . . . . 19 𝑀 ∈ ℤ
3 uzid 12248 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
42, 3ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑀 ∈ (ℤ𝑀)
5 fdc.3 . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑀)
64, 5eleqtrri 2889 . . . . . . . . . . . . . . . . 17 𝑀𝑍
7 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 {⟨𝑀, 𝑎⟩} = {⟨𝑀, 𝑎⟩}
82elexi 3460 . . . . . . . . . . . . . . . . . . . . . . 23 𝑀 ∈ V
9 vex 3444 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 ∈ V
108, 9fsn 6874 . . . . . . . . . . . . . . . . . . . . . 22 ({⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎} ↔ {⟨𝑀, 𝑎⟩} = {⟨𝑀, 𝑎⟩})
117, 10mpbir 234 . . . . . . . . . . . . . . . . . . . . 21 {⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎}
12 snssi 4701 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝐴 → {𝑎} ⊆ 𝐴)
13 fss 6501 . . . . . . . . . . . . . . . . . . . . 21 (({⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎} ∧ {𝑎} ⊆ 𝐴) → {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
1411, 12, 13sylancr 590 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐴 → {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
15 fzsn 12946 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
162, 15ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (𝑀...𝑀) = {𝑀}
1716feq2i 6479 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ↔ {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
1814, 17sylibr 237 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐴 → {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴)
1918adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴)
208, 9fvsn 6920 . . . . . . . . . . . . . . . . . . 19 ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎
2120a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎)
22 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → 𝜃)
23 snex 5297 . . . . . . . . . . . . . . . . . . 19 {⟨𝑀, 𝑎⟩} ∈ V
24 feq1 6468 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓:(𝑀...𝑀)⟶𝐴 ↔ {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴))
25 fveq1 6644 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓𝑀) = ({⟨𝑀, 𝑎⟩}‘𝑀))
2625eqeq1d 2800 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {⟨𝑀, 𝑎⟩} → ((𝑓𝑀) = 𝑎 ↔ ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎))
2725, 20eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓𝑀) = 𝑎)
28 sbceq2a 3732 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑀) = 𝑎 → ([(𝑓𝑀) / 𝑎]𝜃𝜃))
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {⟨𝑀, 𝑎⟩} → ([(𝑓𝑀) / 𝑎]𝜃𝜃))
3026, 29anbi12d 633 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = {⟨𝑀, 𝑎⟩} → (((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ↔ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃)))
3124, 30anbi12d 633 . . . . . . . . . . . . . . . . . . 19 (𝑓 = {⟨𝑀, 𝑎⟩} → ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)) ↔ ({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ∧ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃))))
3223, 31spcev 3555 . . . . . . . . . . . . . . . . . 18 (({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ∧ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃)) → ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
3319, 21, 22, 32syl12anc 835 . . . . . . . . . . . . . . . . 17 ((𝑎𝐴𝜃) → ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
34 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
3534feq2d 6473 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑀)⟶𝐴))
36 fvex 6658 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓𝑛) ∈ V
37 fdc.7 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
3836, 37sbcie 3760 . . . . . . . . . . . . . . . . . . . . . . 23 ([(𝑓𝑛) / 𝑎]𝜃𝜏)
39 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑀 → (𝑓𝑛) = (𝑓𝑀))
4039sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑀 → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓𝑀) / 𝑎]𝜃))
4138, 40bitr3id 288 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝜏[(𝑓𝑀) / 𝑎]𝜃))
4241anbi2d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (((𝑓𝑀) = 𝑎𝜏) ↔ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
43 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑀 → (𝑁...𝑛) = (𝑁...𝑀))
44 fdc.4 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑁 = (𝑀 + 1)
4544oveq1i 7145 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁...𝑀) = ((𝑀 + 1)...𝑀)
462zrei 11977 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 ∈ ℝ
4746ltp1i 11535 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑀 < (𝑀 + 1)
48 peano2z 12013 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
492, 48ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 + 1) ∈ ℤ
50 fzn 12920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑀) = ∅))
5149, 2, 50mp2an 691 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑀) = ∅)
5247, 51mpbi 233 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 + 1)...𝑀) = ∅
5345, 52eqtri 2821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁...𝑀) = ∅
5443, 53eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝑁...𝑛) = ∅)
5554raleqdv 3364 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ ∅ 𝜒))
5635, 42, 553anbi123d 1433 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑀 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒)))
57 ral0 4414 . . . . . . . . . . . . . . . . . . . . 21 𝑘 ∈ ∅ 𝜒
58 df-3an 1086 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒) ↔ ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)) ∧ ∀𝑘 ∈ ∅ 𝜒))
5957, 58mpbiran2 709 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
6056, 59syl6bb 290 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑀 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))))
6160exbidv 1922 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑀 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))))
6261rspcev 3571 . . . . . . . . . . . . . . . . 17 ((𝑀𝑍 ∧ ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
636, 33, 62sylancr 590 . . . . . . . . . . . . . . . 16 ((𝑎𝐴𝜃) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6463adantll 713 . . . . . . . . . . . . . . 15 (((𝜂𝑎𝐴) ∧ 𝜃) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6564a1d 25 . . . . . . . . . . . . . 14 (((𝜂𝑎𝐴) ∧ 𝜃) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
66 fdc.11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
67 breq1 5033 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑏 → (𝑑𝑅𝑎𝑏𝑅𝑎))
6867rspcev 3571 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∧ 𝑏𝑅𝑎) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎)
6968expcom 417 . . . . . . . . . . . . . . . . . . . . 21 (𝑏𝑅𝑎 → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎))
7066, 69syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎))
71 dfrex2 3202 . . . . . . . . . . . . . . . . . . . 20 (∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎 ↔ ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
7270, 71syl6ib 254 . . . . . . . . . . . . . . . . . . 19 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
7372con2d 136 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
74 eldif 3891 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ (𝑏𝐴 ∧ ¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
7574simplbi2 504 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐴 → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → 𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))))
76 ssrab2 4007 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴
77 dfss4 4185 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
7876, 77mpbi 233 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}
7978eleq2i 2881 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ 𝑏 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
80 eqeq2 2810 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑏 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝑏))
8180anbi1d 632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑏 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝑏𝜏)))
82813anbi2d 1438 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑏 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8382exbidv 1922 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = 𝑏 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8483rexbidv 3256 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = 𝑏 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8584elrab3 3629 . . . . . . . . . . . . . . . . . . . . 21 (𝑏𝐴 → (𝑏 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8679, 85syl5bb 286 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐴 → (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8775, 86sylibd 242 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐴 → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8887ad2antll 728 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
89 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑀...𝑛) = (𝑀...𝑚))
9089feq2d 6473 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑚)⟶𝐴))
91 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
9291sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓𝑚) / 𝑎]𝜃))
9338, 92bitr3id 288 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝜏[(𝑓𝑚) / 𝑎]𝜃))
9493anbi2d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (((𝑓𝑀) = 𝑏𝜏) ↔ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃)))
95 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑁...𝑛) = (𝑁...𝑚))
9695raleqdv 3364 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ (𝑁...𝑚)𝜒))
9790, 94, 963anbi123d 1433 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒)))
9897exbidv 1922 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒)))
9998cbvrexvw 3397 . . . . . . . . . . . . . . . . . . . 20 (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑚𝑍𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒))
100 feq1 6468 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝑓:(𝑀...𝑚)⟶𝐴𝑔:(𝑀...𝑚)⟶𝐴))
101 fveq1 6644 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → (𝑓𝑀) = (𝑔𝑀))
102101eqeq1d 2800 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → ((𝑓𝑀) = 𝑏 ↔ (𝑔𝑀) = 𝑏))
103 fveq1 6644 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → (𝑓𝑚) = (𝑔𝑚))
104103sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → ([(𝑓𝑚) / 𝑎]𝜃[(𝑔𝑚) / 𝑎]𝜃))
105102, 104anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ↔ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃)))
106 fvex 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓‘(𝑘 − 1)) ∈ V
107 fdc.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
108107sbcbidv 3774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓‘(𝑘 − 1)) → ([(𝑓𝑘) / 𝑏]𝜑[(𝑓𝑘) / 𝑏]𝜓))
109106, 108sbcie 3760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[(𝑓𝑘) / 𝑏]𝜓)
110 fvex 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓𝑘) ∈ V
111 fdc.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
112110, 111sbcie 3760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([(𝑓𝑘) / 𝑏]𝜓𝜒)
113109, 112bitri 278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑𝜒)
114 fveq1 6644 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑔 → (𝑓‘(𝑘 − 1)) = (𝑔‘(𝑘 − 1)))
115 fveq1 6644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑔 → (𝑓𝑘) = (𝑔𝑘))
116115sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑔 → ([(𝑓𝑘) / 𝑏]𝜑[(𝑔𝑘) / 𝑏]𝜑))
117114, 116sbceqbid 3727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
118113, 117bitr3id 288 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → (𝜒[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
119118ralbidv 3162 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (∀𝑘 ∈ (𝑁...𝑚)𝜒 ↔ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
120100, 105, 1193anbi123d 1433 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑔 → ((𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)))
121120cbvexvw 2044 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ ∃𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
122121rexbii 3210 . . . . . . . . . . . . . . . . . . . 20 (∃𝑚𝑍𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ ∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
12399, 122bitri 278 . . . . . . . . . . . . . . . . . . 19 (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
1245peano2uzs 12292 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚𝑍 → (𝑚 + 1) ∈ 𝑍)
125124ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → (𝑚 + 1) ∈ 𝑍)
126 sbceq2a 3732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑑 = 𝑏 → ([𝑑 / 𝑏]𝜑𝜑))
127126anbi1d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 = 𝑏 → (([𝑑 / 𝑏]𝜑𝑎𝐴) ↔ (𝜑𝑎𝐴)))
128127anbi1d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 = 𝑏 → ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) ↔ ((𝜑𝑎𝐴) ∧ 𝑚𝑍)))
129 eqeq2 2810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑑 = 𝑏 → ((𝑔𝑀) = 𝑑 ↔ (𝑔𝑀) = 𝑏))
130129anbi1d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑑 = 𝑏 → (((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ↔ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃)))
1311303anbi2d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 = 𝑏 → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) ↔ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)))
132131imbi1d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 = 𝑏 → (((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) ↔ ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))))
133128, 132imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 = 𝑏 → (((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))) ↔ (((𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))))
134 sbceq2a 3732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → ([𝑐 / 𝑎][𝑑 / 𝑏]𝜑[𝑑 / 𝑏]𝜑))
135 eleq1 2877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → (𝑐𝐴𝑎𝐴))
136134, 135anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ↔ ([𝑑 / 𝑏]𝜑𝑎𝐴)))
137136anbi1d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ↔ (([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍)))
138 eqeq2 2810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑎 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝑎))
139138anbi1d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑎 → (((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ↔ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃)))
1401393anbi2d 1438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → ((𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
141140exbidv 1922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
142141imbi2d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → (((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) ↔ ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))))
143137, 142imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = 𝑎 → (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))) ↔ ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))))
144 peano2uz 12291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (ℤ𝑀))
145144, 5eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ𝑀))
146 elfzp12 12983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚 + 1) ∈ (ℤ𝑀) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
147145, 146syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
148147ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
149 iftrue 4431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = 𝑐)
150149eleq1d 2874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = 𝑀 → (if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴𝑐𝐴))
151150biimprcd 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐𝐴 → (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
152151ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
153 1re 10632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1 ∈ ℝ
15446, 153readdcli 10647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑀 + 1) ∈ ℝ
15546, 154ltnlei 10752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀)
15647, 155mpbi 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ¬ (𝑀 + 1) ≤ 𝑀
157 eleq1 2877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = 𝑀 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) ↔ 𝑀 ∈ ((𝑀 + 1)...(𝑚 + 1))))
158 elfzle1 12907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑀 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑀 + 1) ≤ 𝑀)
159157, 158syl6bi 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥 = 𝑀 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑀 + 1) ≤ 𝑀))
160159com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 = 𝑀 → (𝑀 + 1) ≤ 𝑀))
161156, 160mtoi 202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → ¬ 𝑥 = 𝑀)
162161adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → ¬ 𝑥 = 𝑀)
163162iffalsed 4436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = (𝑔‘(𝑥 − 1)))
164 elfzelz 12904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → 𝑥 ∈ ℤ)
165164adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → 𝑥 ∈ ℤ)
166 eluzelz 12243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
167166, 5eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑚𝑍𝑚 ∈ ℤ)
168167peano2zd 12080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑚𝑍 → (𝑚 + 1) ∈ ℤ)
169 1z 12002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 1 ∈ ℤ
170 fzsubel 12940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) ↔ (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
171170biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
172169, 171mpanr2 703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
17349, 172mpanl1 699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 + 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
174173ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚 + 1) ∈ ℤ → (𝑥 ∈ ℤ → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
175168, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → (𝑥 ∈ ℤ → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
176175com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 ∈ ℤ → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
177176imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 ∈ ℤ → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
178165, 177mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))
17946recni 10646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑀 ∈ ℂ
180 ax-1cn 10586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1 ∈ ℂ
181179, 180pncan3oi 10893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑀 + 1) − 1) = 𝑀
182181a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑀 + 1) − 1) = 𝑀)
183167zcnd 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍𝑚 ∈ ℂ)
184 pncan 10883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
185183, 180, 184sylancl 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑚 + 1) − 1) = 𝑚)
186182, 185oveq12d 7153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑚𝑍 → (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑀...𝑚))
187186adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑀...𝑚))
188178, 187eleqtrd 2892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 − 1) ∈ (𝑀...𝑚))
189 ffvelrn 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ (𝑥 − 1) ∈ (𝑀...𝑚)) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
190188, 189sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ (𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
191190anassrs 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑔:(𝑀...𝑚)⟶𝐴𝑚𝑍) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
192191ancom1s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
193163, 192eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴)
194193ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
195194adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
196152, 195jaod 856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → ((𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
197148, 196sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
198197ralrimiv 3148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → ∀𝑥 ∈ (𝑀...(𝑚 + 1))if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴)
199 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))
200199fmpt 6851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑥 ∈ (𝑀...(𝑚 + 1))if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴 ↔ (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
201198, 200sylib 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
202201adantlll 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
2032023ad2antr1 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
204 eluzfz1 12911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑚 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑚 + 1)))
205144, 204syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑚 + 1)))
206205, 5eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚𝑍𝑀 ∈ (𝑀...(𝑚 + 1)))
207 vex 3444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑐 ∈ V
208149, 199, 207fvmpt 6745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
209206, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
210209ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
211 eluzfz2 12912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚 + 1) ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
212144, 211syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
213212, 5eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
214 eqeq1 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = (𝑚 + 1) → (𝑥 = 𝑀 ↔ (𝑚 + 1) = 𝑀))
215 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = (𝑚 + 1) → (𝑔‘(𝑥 − 1)) = (𝑔‘((𝑚 + 1) − 1)))
216214, 215ifbieq2d 4450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑚 + 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
217 fvex 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑔‘((𝑚 + 1) − 1)) ∈ V
218207, 217ifex 4473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))) ∈ V
219216, 199, 218fvmpt 6745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑚 + 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
220213, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
221 eluzle 12246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑚 ∈ (ℤ𝑀) → 𝑀𝑚)
222221, 5eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍𝑀𝑚)
223 zleltp1 12023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀𝑚𝑀 < (𝑚 + 1)))
2242, 167, 223sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍 → (𝑀𝑚𝑀 < (𝑚 + 1)))
225222, 224mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚𝑍𝑀 < (𝑚 + 1))
226 ltne 10728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑀 ∈ ℝ ∧ 𝑀 < (𝑚 + 1)) → (𝑚 + 1) ≠ 𝑀)
22746, 225, 226sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚𝑍 → (𝑚 + 1) ≠ 𝑀)
228227neneqd 2992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → ¬ (𝑚 + 1) = 𝑀)
229228iffalsed 4436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))) = (𝑔‘((𝑚 + 1) − 1)))
230185fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → (𝑔‘((𝑚 + 1) − 1)) = (𝑔𝑚))
231220, 229, 2303eqtrd 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = (𝑔𝑚))
232231sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚𝑍 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃[(𝑔𝑚) / 𝑎]𝜃))
233232biimpar 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚𝑍[(𝑔𝑚) / 𝑎]𝜃) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
234233ad2ant2l 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
2352343ad2antr2 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
236 eluzp1p1 12260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (ℤ‘(𝑀 + 1)))
237236, 5eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ‘(𝑀 + 1)))
23844fveq2i 6648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (ℤ𝑁) = (ℤ‘(𝑀 + 1))
239237, 238eleqtrrdi 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ𝑁))
240 elfzp12 12983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 + 1) ∈ (ℤ𝑁) → (𝑗 ∈ (𝑁...(𝑚 + 1)) ↔ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))))
241239, 240syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍 → (𝑗 ∈ (𝑁...(𝑚 + 1)) ↔ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))))
242241biimpa 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚𝑍𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
243242adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
244243adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
245 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = 𝑁 → (𝑗 − 1) = (𝑁 − 1))
24644oveq1i 7145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 − 1) = ((𝑀 + 1) − 1)
247246, 181eqtri 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑁 − 1) = 𝑀
248245, 247eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 = 𝑁 → (𝑗 − 1) = 𝑀)
249248fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑗 = 𝑁 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
250249ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
251209adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
252250, 251eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = 𝑐)
25344eqeq2i 2811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = 𝑁𝑗 = (𝑀 + 1))
254 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = (𝑀 + 1) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
255253, 254sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 = 𝑁 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
256255ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
25746, 154, 47ltleii 10754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑀 ≤ (𝑀 + 1)
258 eluz2 12239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑀 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)))
2592, 49, 257, 258mpbir3an 1338 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 + 1) ∈ (ℤ𝑀)
260 fzss1 12943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
261259, 260ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑀 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
262 eluzfz1 12911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑚))
263262, 5eleq2s 2908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚𝑍𝑀 ∈ (𝑀...𝑚))
264 fzaddel 12938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
2652, 169, 264mpanr12 704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
2662, 167, 265sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚𝑍 → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
267263, 266mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑚𝑍 → (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1)))
268261, 267sseldi 3913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑚𝑍 → (𝑀 + 1) ∈ (𝑀...(𝑚 + 1)))
269 eqeq1 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑥 = (𝑀 + 1) → (𝑥 = 𝑀 ↔ (𝑀 + 1) = 𝑀))
270 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = (𝑀 + 1) → (𝑥 − 1) = ((𝑀 + 1) − 1))
271270, 181eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑥 = (𝑀 + 1) → (𝑥 − 1) = 𝑀)
272271fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑥 = (𝑀 + 1) → (𝑔‘(𝑥 − 1)) = (𝑔𝑀))
273269, 272ifbieq2d 4450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = (𝑀 + 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
274 fvex 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑔𝑀) ∈ V
275207, 274ifex 4473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) ∈ V
276273, 199, 275fvmpt 6745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑀 + 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
277268, 276syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
27846, 47gtneii 10743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑀 + 1) ≠ 𝑀
279 ifnefalse 4437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑀 + 1) ≠ 𝑀 → if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) = (𝑔𝑀))
280278, 279ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) = (𝑔𝑀)
281277, 280eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = (𝑔𝑀))
282281adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = (𝑔𝑀))
283 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → (𝑔𝑀) = 𝑑)
284256, 282, 2833eqtrd 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = 𝑑)
285284sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[𝑑 / 𝑏]𝜑))
286252, 285sbceqbid 3727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[𝑐 / 𝑎][𝑑 / 𝑏]𝜑))
287286biimparc 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (([𝑐 / 𝑎][𝑑 / 𝑏]𝜑 ∧ (𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
288287anassrs 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
289288anassrs 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ (𝑔𝑀) = 𝑑) ∧ 𝑗 = 𝑁) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
290289adantlrr 720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 = 𝑁) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
291 elfzelz 12904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → 𝑗 ∈ ℤ)
292291adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ ℤ)
29344, 49eqeltri 2886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑁 ∈ ℤ
294 peano2z 12013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
295293, 294ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 + 1) ∈ ℤ
296 fzsubel 12940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
297296biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
298169, 297mpanr2 703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
299298ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) → (𝑗 ∈ ℤ → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
300295, 168, 299sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → (𝑗 ∈ ℤ → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
301300com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 ∈ ℤ → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
302301imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 ∈ ℤ → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
303292, 302mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))
304293zrei 11977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑁 ∈ ℝ
305304recni 10646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑁 ∈ ℂ
306305, 180pncan3oi 10893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑁 + 1) − 1) = 𝑁
307306a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑁 + 1) − 1) = 𝑁)
308307, 185oveq12d 7153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑚𝑍 → (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑁...𝑚))
309308adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑁...𝑚))
310303, 309eleqtrd 2892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑁...𝑚))
311 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = (𝑗 − 1) → (𝑔‘(𝑘 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
312 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑘 = (𝑗 − 1) → (𝑔𝑘) = (𝑔‘(𝑗 − 1)))
313312sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = (𝑗 − 1) → ([(𝑔𝑘) / 𝑏]𝜑[(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
314311, 313sbceqbid 3727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑘 = (𝑗 − 1) → ([(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑[(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
315314rspcva 3569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑗 − 1) ∈ (𝑁...𝑚) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑)
316310, 315sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑)
31744, 259eqeltri 2886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑁 ∈ (ℤ𝑀)
318 fzss1 12943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 ∈ (ℤ𝑀) → (𝑁...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
319317, 318ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑁...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
320 fzssp1 12947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁...𝑚) ⊆ (𝑁...(𝑚 + 1))
321320, 310sseldi 3913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑁...(𝑚 + 1)))
322319, 321sseldi 3913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑀...(𝑚 + 1)))
323 eqeq1 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = (𝑗 − 1) → (𝑥 = 𝑀 ↔ (𝑗 − 1) = 𝑀))
324 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = (𝑗 − 1) → (𝑔‘(𝑥 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
325323, 324ifbieq2d 4450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑥 = (𝑗 − 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
326 fvex 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑔‘((𝑗 − 1) − 1)) ∈ V
327207, 326ifex 4473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))) ∈ V
328325, 199, 327fvmpt 6745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑗 − 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
329322, 328syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
330154ltp1i 11535 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 + 1) < ((𝑀 + 1) + 1)
33144oveq1i 7145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑁 + 1) = ((𝑀 + 1) + 1)
332330, 331breqtrri 5057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑀 + 1) < (𝑁 + 1)
333304, 153readdcli 10647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑁 + 1) ∈ ℝ
334154, 333ltnlei 10752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑀 + 1) < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ (𝑀 + 1))
335332, 334mpbi 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ¬ (𝑁 + 1) ≤ (𝑀 + 1)
336291zcnd 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → 𝑗 ∈ ℂ)
337 subadd 10880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
338180, 179, 337mp3an23 1450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ℂ → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
339336, 338syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
340 eqcom 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((1 + 𝑀) = 𝑗𝑗 = (1 + 𝑀))
341180, 179addcomi 10822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (1 + 𝑀) = (𝑀 + 1)
342341eqeq2i 2811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = (1 + 𝑀) ↔ 𝑗 = (𝑀 + 1))
343340, 342bitri 278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((1 + 𝑀) = 𝑗𝑗 = (𝑀 + 1))
344 eleq1 2877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑗 = (𝑀 + 1) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ (𝑀 + 1) ∈ ((𝑁 + 1)...(𝑚 + 1))))
345 elfzle1 12907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝑀 + 1) ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ (𝑀 + 1))
346344, 345syl6bi 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = (𝑀 + 1) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ (𝑀 + 1)))
347346com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 = (𝑀 + 1) → (𝑁 + 1) ≤ (𝑀 + 1)))
348343, 347syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((1 + 𝑀) = 𝑗 → (𝑁 + 1) ≤ (𝑀 + 1)))
349339, 348sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((𝑗 − 1) = 𝑀 → (𝑁 + 1) ≤ (𝑀 + 1)))
350335, 349mtoi 202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ¬ (𝑗 − 1) = 𝑀)
351350adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ¬ (𝑗 − 1) = 𝑀)
352351iffalsed 4436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))) = (𝑔‘((𝑗 − 1) − 1)))
353329, 352eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
354 peano2uz 12291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
355 fzss1 12943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
356317, 354, 355mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑁 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
357 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))
358356, 357sseldi 3913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ (𝑀...(𝑚 + 1)))
359 eqeq1 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = 𝑗 → (𝑥 = 𝑀𝑗 = 𝑀))
360 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = 𝑗 → (𝑔‘(𝑥 − 1)) = (𝑔‘(𝑗 − 1)))
361359, 360ifbieq2d 4450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = 𝑗 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
362 fvex 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑔‘(𝑗 − 1)) ∈ V
363207, 362ifex 4473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))) ∈ V
364361, 199, 363fvmpt 6745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
365358, 364syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
36647, 44breqtrri 5057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑀 < 𝑁
367304ltp1i 11535 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑁 < (𝑁 + 1)
36846, 304, 333lttri 10757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 < 𝑁𝑁 < (𝑁 + 1)) → 𝑀 < (𝑁 + 1))
369366, 367, 368mp2an 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 𝑀 < (𝑁 + 1)
37046, 333ltnlei 10752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑀)
371369, 370mpbi 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ¬ (𝑁 + 1) ≤ 𝑀
372 eleq1 2877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = 𝑀 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ 𝑀 ∈ ((𝑁 + 1)...(𝑚 + 1))))
373 elfzle1 12907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑀 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ 𝑀)
374372, 373syl6bi 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 = 𝑀 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ 𝑀))
375374com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 = 𝑀 → (𝑁 + 1) ≤ 𝑀))
376371, 375mtoi 202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ¬ 𝑗 = 𝑀)
377376adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ¬ 𝑗 = 𝑀)
378377iffalsed 4436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))) = (𝑔‘(𝑗 − 1)))
379365, 378eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = (𝑔‘(𝑗 − 1)))
380379sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
381353, 380sbceqbid 3727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
382381biimpar 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
383316, 382syldan 594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
384383an32s 651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
385384adantlrl 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
386385adantlll 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
387290, 386jaodan 955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
388244, 387syldan 594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
389388ralrimiva 3149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑗 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
390 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 = 𝑘 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)))
391 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑗 = 𝑘 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘))
392391sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 = 𝑘 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
393390, 392sbceqbid 3727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 = 𝑘 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
394393cbvralvw 3396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∀𝑗 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
395389, 394sylib 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
396395adantllr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
397396adantrlr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
3983973adantr1 1166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
399 ovex 7168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀...(𝑚 + 1)) ∈ V
400399mptex 6963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) ∈ V
401 feq1 6468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ↔ (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴))
402 fveq1 6644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓𝑀) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
403402eqeq1d 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ((𝑓𝑀) = 𝑐 ↔ ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐))
404 fveq1 6644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓‘(𝑚 + 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)))
405404sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓‘(𝑚 + 1)) / 𝑎]𝜃[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃))
406403, 405anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ↔ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)))
407 fveq1 6644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓‘(𝑘 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)))
408 fveq1 6644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓𝑘) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘))
409408sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓𝑘) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
410407, 409sbceqbid 3727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
411113, 410bitr3id 288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝜒[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
412411ralbidv 3162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
413401, 406, 4123anbi123d 1433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ((𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴 ∧ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)))
414400, 413spcev 3555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴 ∧ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
415203, 210, 235, 398, 414syl121anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
416415ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
417143, 416chvarvv 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
418133, 417chvarvv 2005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
419418adantlrr 720 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
420419adantlll 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
421420imp 410 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
422 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝑀...𝑛) = (𝑀...(𝑚 + 1)))
423422feq2d 6473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...(𝑚 + 1))⟶𝐴))
424 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = (𝑚 + 1) → (𝑓𝑛) = (𝑓‘(𝑚 + 1)))
425424sbceq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = (𝑚 + 1) → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃))
42638, 425bitr3id 288 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝜏[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃))
427426anbi2d 631 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (((𝑓𝑀) = 𝑎𝜏) ↔ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃)))
428 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝑁...𝑛) = (𝑁...(𝑚 + 1)))
429428raleqdv 3364 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
430423, 427, 4293anbi123d 1433 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = (𝑚 + 1) → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
431430exbidv 1922 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = (𝑚 + 1) → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
432431rspcev 3571 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 + 1) ∈ 𝑍 ∧ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
433125, 421, 432syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
434433ex 416 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
435434exlimdv 1934 . . . . . . . . . . . . . . . . . . . 20 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → (∃𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
436435rexlimdva 3243 . . . . . . . . . . . . . . . . . . 19 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
437123, 436syl5bi 245 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
43873, 88, 4373syld 60 . . . . . . . . . . . . . . . . 17 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
439438an42s 660 . . . . . . . . . . . . . . . 16 (((𝜂𝑎𝐴) ∧ (𝑏𝐴𝜑)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
440439rexlimdvaa 3244 . . . . . . . . . . . . . . 15 ((𝜂𝑎𝐴) → (∃𝑏𝐴 𝜑 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))))
441440imp 410 . . . . . . . . . . . . . 14 (((𝜂𝑎𝐴) ∧ ∃𝑏𝐴 𝜑) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
442 fdc.10 . . . . . . . . . . . . . 14 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
44365, 441, 442mpjaodan 956 . . . . . . . . . . . . 13 ((𝜂𝑎𝐴) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
444138anbi1d 632 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑎 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝑎𝜏)))
4454443anbi2d 1438 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑎 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
446445exbidv 1922 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑎 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
447446rexbidv 3256 . . . . . . . . . . . . . . 15 (𝑐 = 𝑎 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
448447elrab3 3629 . . . . . . . . . . . . . 14 (𝑎𝐴 → (𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
449448adantl 485 . . . . . . . . . . . . 13 ((𝜂𝑎𝐴) → (𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
450443, 449sylibrd 262 . . . . . . . . . . . 12 ((𝜂𝑎𝐴) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
451450ex 416 . . . . . . . . . . 11 (𝜂 → (𝑎𝐴 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
452451com23 86 . . . . . . . . . 10 (𝜂 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → (𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
453 eldif 3891 . . . . . . . . . . . 12 (𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
454453notbii 323 . . . . . . . . . . 11 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ ¬ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
455 iman 405 . . . . . . . . . . 11 ((𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ ¬ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
456454, 455bitr4i 281 . . . . . . . . . 10 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ (𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
457452, 456syl6ibr 255 . . . . . . . . 9 (𝜂 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ¬ 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
458457con2d 136 . . . . . . . 8 (𝜂 → (𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
459458imp 410 . . . . . . 7 ((𝜂𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
460459nrexdv 3229 . . . . . 6 (𝜂 → ¬ ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
461 df-ne 2988 . . . . . . 7 ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ ↔ ¬ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
462 fdc.9 . . . . . . . 8 (𝜂𝑅 Fr 𝐴)
463 difss 4059 . . . . . . . 8 (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴
464 fdc.1 . . . . . . . . . . 11 𝐴 ∈ V
465 difexg 5195 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V)
466464, 465ax-mp 5 . . . . . . . . . 10 (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V
467 fri 5481 . . . . . . . . . 10 ((((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V ∧ 𝑅 Fr 𝐴) ∧ ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅)) → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
468466, 467mpanl1 699 . . . . . . . . 9 ((𝑅 Fr 𝐴 ∧ ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅)) → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
469468expr 460 . . . . . . . 8 ((𝑅 Fr 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴) → ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
470462, 463, 469sylancl 589 . . . . . . 7 (𝜂 → ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
471461, 470syl5bir 246 . . . . . 6 (𝜂 → (¬ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
472460, 471mt3d 150 . . . . 5 (𝜂 → (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
473 ssdif0 4277 . . . . 5 (𝐴 ⊆ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
474472, 473sylibr 237 . . . 4 (𝜂𝐴 ⊆ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
47576a1i 11 . . . 4 (𝜂 → {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴)
476474, 475eqssd 3932 . . 3 (𝜂𝐴 = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
477 rabid2 3334 . . 3 (𝐴 = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
478476, 477sylib 221 . 2 (𝜂 → ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
479 eqeq2 2810 . . . . . . 7 (𝑐 = 𝐶 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝐶))
480479anbi1d 632 . . . . . 6 (𝑐 = 𝐶 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝐶𝜏)))
4814803anbi2d 1438 . . . . 5 (𝑐 = 𝐶 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
482481exbidv 1922 . . . 4 (𝑐 = 𝐶 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
483482rexbidv 3256 . . 3 (𝑐 = 𝐶 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
484483rspcva 3569 . 2 ((𝐶𝐴 ∧ ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
4851, 478, 484syl2anc 587 1 (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  {crab 3110  Vcvv 3441  [wsbc 3720   ∖ cdif 3878   ⊆ wss 3881  ∅c0 4243  ifcif 4425  {csn 4525  ⟨cop 4531   class class class wbr 5030   ↦ cmpt 5110   Fr wfr 5475  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  ℂcc 10526  ℝcr 10527  1c1 10529   + caddc 10531   < clt 10666   ≤ cle 10667   − cmin 10861  ℤcz 11971  ℤ≥cuz 12233  ...cfz 12887 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-n0 11888  df-z 11972  df-uz 12234  df-fz 12888 This theorem is referenced by:  fdc1  35200
 Copyright terms: Public domain W3C validator