MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1v Structured version   Visualization version   GIF version

Theorem sbcel1v 3822
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2371. (Revised by Wolf Lammen, 30-Apr-2023.)
Assertion
Ref Expression
sbcel1v ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbcel1v
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3766 . 2 ([𝐴 / 𝑥]𝑥𝐵𝐴 ∈ V)
2 elex 3471 . 2 (𝐴𝐵𝐴 ∈ V)
3 dfsbcq2 3759 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥𝐵[𝐴 / 𝑥]𝑥𝐵))
4 eleq1 2817 . . 3 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
5 clelsb1 2856 . . 3 ([𝑦 / 𝑥]𝑥𝐵𝑦𝐵)
63, 4, 5vtoclbg 3526 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵))
71, 2, 6pm5.21nii 378 1 ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2065  wcel 2109  Vcvv 3450  [wsbc 3756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-sbc 3757
This theorem is referenced by:  tfinds2  7843  filuni  23779  gropeld  28967  grstructeld  28968  f1od2  32651  esum2dlem  34089  bnj110  34855  f1omptsnlem  37331  relowlpssretop  37359  rdgeqoa  37365  minregex  43530  cotrclrcl  43738  frege70  43929  frege72  43931  frege91  43950  sbcoreleleq  44532  onfrALTlem4  44540  sbcoreleleqVD  44855  onfrALTlem4VD  44882  rspesbcd  44934
  Copyright terms: Public domain W3C validator