MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1v Structured version   Visualization version   GIF version

Theorem sbcel1v 3807
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2372. (Revised by Wolf Lammen, 30-Apr-2023.)
Assertion
Ref Expression
sbcel1v ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbcel1v
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3751 . 2 ([𝐴 / 𝑥]𝑥𝐵𝐴 ∈ V)
2 elex 3457 . 2 (𝐴𝐵𝐴 ∈ V)
3 dfsbcq2 3744 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥𝐵[𝐴 / 𝑥]𝑥𝐵))
4 eleq1 2819 . . 3 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
5 clelsb1 2858 . . 3 ([𝑦 / 𝑥]𝑥𝐵𝑦𝐵)
63, 4, 5vtoclbg 3512 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵))
71, 2, 6pm5.21nii 378 1 ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2067  wcel 2111  Vcvv 3436  [wsbc 3741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-sbc 3742
This theorem is referenced by:  tfinds2  7794  filuni  23798  gropeld  29009  grstructeld  29010  f1od2  32697  esum2dlem  34100  bnj110  34865  f1omptsnlem  37369  relowlpssretop  37397  rdgeqoa  37403  minregex  43566  cotrclrcl  43774  frege70  43965  frege72  43967  frege91  43986  sbcoreleleq  44567  onfrALTlem4  44575  sbcoreleleqVD  44890  onfrALTlem4VD  44917  rspesbcd  44969
  Copyright terms: Public domain W3C validator