| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcel1v | Structured version Visualization version GIF version | ||
| Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2374. (Revised by Wolf Lammen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| sbcel1v | ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3747 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | elex 3458 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | dfsbcq2 3740 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑥 ∈ 𝐵)) | |
| 4 | eleq1 2821 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | clelsb1 2860 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵) | |
| 6 | 3, 4, 5 | vtoclbg 3511 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 7 | 1, 2, 6 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 ∈ wcel 2113 Vcvv 3437 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-sbc 3738 |
| This theorem is referenced by: tfinds2 7800 filuni 23801 gropeld 29013 grstructeld 29014 f1od2 32706 esum2dlem 34126 bnj110 34891 f1omptsnlem 37401 relowlpssretop 37429 rdgeqoa 37435 minregex 43651 cotrclrcl 43859 frege70 44050 frege72 44052 frege91 44071 sbcoreleleq 44652 onfrALTlem4 44660 sbcoreleleqVD 44975 onfrALTlem4VD 45002 rspesbcd 45054 |
| Copyright terms: Public domain | W3C validator |