![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcel1v | Structured version Visualization version GIF version |
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2365. (Revised by Wolf Lammen, 30-Apr-2023.) |
Ref | Expression |
---|---|
sbcel1v | ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3784 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | elex 3482 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | dfsbcq2 3777 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑥 ∈ 𝐵)) | |
4 | eleq1 2813 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | clelsb1 2852 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵) | |
6 | 3, 4, 5 | vtoclbg 3536 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
7 | 1, 2, 6 | pm5.21nii 377 | 1 ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2059 ∈ wcel 2098 Vcvv 3463 [wsbc 3774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3465 df-sbc 3775 |
This theorem is referenced by: tfinds2 7867 filuni 23819 gropeld 28902 grstructeld 28903 f1od2 32560 esum2dlem 33781 bnj110 34559 f1omptsnlem 36885 relowlpssretop 36913 rdgeqoa 36919 minregex 43029 cotrclrcl 43237 frege70 43428 frege72 43430 frege91 43449 sbcoreleleq 44039 onfrALTlem4 44047 sbcoreleleqVD 44363 onfrALTlem4VD 44390 |
Copyright terms: Public domain | W3C validator |