MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1v Structured version   Visualization version   GIF version

Theorem sbcel1v 3783
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2372. (Revised by Wolf Lammen, 30-Apr-2023.)
Assertion
Ref Expression
sbcel1v ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbcel1v
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3721 . 2 ([𝐴 / 𝑥]𝑥𝐵𝐴 ∈ V)
2 elex 3440 . 2 (𝐴𝐵𝐴 ∈ V)
3 dfsbcq2 3714 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥𝐵[𝐴 / 𝑥]𝑥𝐵))
4 eleq1 2826 . . 3 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
5 clelsb1 2866 . . 3 ([𝑦 / 𝑥]𝑥𝐵𝑦𝐵)
63, 4, 5vtoclbg 3497 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵))
71, 2, 6pm5.21nii 379 1 ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2068  wcel 2108  Vcvv 3422  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-sbc 3712
This theorem is referenced by:  tfinds2  7685  filuni  22944  gropeld  27306  grstructeld  27307  f1od2  30958  esum2dlem  31960  bnj110  32738  f1omptsnlem  35434  relowlpssretop  35462  rdgeqoa  35468  cotrclrcl  41239  frege70  41430  frege72  41432  frege91  41451  sbcoreleleq  42044  onfrALTlem4  42052  sbcoreleleqVD  42368  onfrALTlem4VD  42395
  Copyright terms: Public domain W3C validator