| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcel1v | Structured version Visualization version GIF version | ||
| Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2370. (Revised by Wolf Lammen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| sbcel1v | ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3763 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | elex 3468 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | dfsbcq2 3756 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑥 ∈ 𝐵)) | |
| 4 | eleq1 2816 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | clelsb1 2855 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵) | |
| 6 | 3, 4, 5 | vtoclbg 3523 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 7 | 1, 2, 6 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 ∈ wcel 2109 Vcvv 3447 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-sbc 3754 |
| This theorem is referenced by: tfinds2 7840 filuni 23772 gropeld 28960 grstructeld 28961 f1od2 32644 esum2dlem 34082 bnj110 34848 f1omptsnlem 37324 relowlpssretop 37352 rdgeqoa 37358 minregex 43523 cotrclrcl 43731 frege70 43922 frege72 43924 frege91 43943 sbcoreleleq 44525 onfrALTlem4 44533 sbcoreleleqVD 44848 onfrALTlem4VD 44875 rspesbcd 44927 |
| Copyright terms: Public domain | W3C validator |