MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1v Structured version   Visualization version   GIF version

Theorem sbcel1v 3803
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2374. (Revised by Wolf Lammen, 30-Apr-2023.)
Assertion
Ref Expression
sbcel1v ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbcel1v
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3747 . 2 ([𝐴 / 𝑥]𝑥𝐵𝐴 ∈ V)
2 elex 3458 . 2 (𝐴𝐵𝐴 ∈ V)
3 dfsbcq2 3740 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥𝐵[𝐴 / 𝑥]𝑥𝐵))
4 eleq1 2821 . . 3 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
5 clelsb1 2860 . . 3 ([𝑦 / 𝑥]𝑥𝐵𝑦𝐵)
63, 4, 5vtoclbg 3511 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵))
71, 2, 6pm5.21nii 378 1 ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2067  wcel 2113  Vcvv 3437  [wsbc 3737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-sbc 3738
This theorem is referenced by:  tfinds2  7800  filuni  23801  gropeld  29013  grstructeld  29014  f1od2  32706  esum2dlem  34126  bnj110  34891  f1omptsnlem  37401  relowlpssretop  37429  rdgeqoa  37435  minregex  43651  cotrclrcl  43859  frege70  44050  frege72  44052  frege91  44071  sbcoreleleq  44652  onfrALTlem4  44660  sbcoreleleqVD  44975  onfrALTlem4VD  45002  rspesbcd  45054
  Copyright terms: Public domain W3C validator