![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcel1v | Structured version Visualization version GIF version |
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2366. (Revised by Wolf Lammen, 30-Apr-2023.) |
Ref | Expression |
---|---|
sbcel1v | ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3784 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | elex 3488 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | dfsbcq2 3777 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑥 ∈ 𝐵)) | |
4 | eleq1 2816 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | clelsb1 2855 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵) | |
6 | 3, 4, 5 | vtoclbg 3540 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
7 | 1, 2, 6 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2060 ∈ wcel 2099 Vcvv 3469 [wsbc 3774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-sbc 3775 |
This theorem is referenced by: tfinds2 7862 filuni 23776 gropeld 28833 grstructeld 28834 f1od2 32487 esum2dlem 33647 bnj110 34425 f1omptsnlem 36751 relowlpssretop 36779 rdgeqoa 36785 minregex 42887 cotrclrcl 43095 frege70 43286 frege72 43288 frege91 43307 sbcoreleleq 43897 onfrALTlem4 43905 sbcoreleleqVD 44221 onfrALTlem4VD 44248 |
Copyright terms: Public domain | W3C validator |