MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sess1 Structured version   Visualization version   GIF version

Theorem sess1 5646
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess1 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))

Proof of Theorem sess1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝑅𝑆𝑦𝐴) → 𝑅𝑆)
21ssbrd 5191 . . . . 5 ((𝑅𝑆𝑦𝐴) → (𝑦𝑅𝑥𝑦𝑆𝑥))
32ss2rabdv 4071 . . . 4 (𝑅𝑆 → {𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥})
4 ssexg 5323 . . . . 5 (({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥} ∧ {𝑦𝐴𝑦𝑆𝑥} ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
54ex 412 . . . 4 ({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥} → ({𝑦𝐴𝑦𝑆𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
63, 5syl 17 . . 3 (𝑅𝑆 → ({𝑦𝐴𝑦𝑆𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
76ralimdv 3166 . 2 (𝑅𝑆 → (∀𝑥𝐴 {𝑦𝐴𝑦𝑆𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
8 df-se 5634 . 2 (𝑆 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑆𝑥} ∈ V)
9 df-se 5634 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 93imtr4g 296 1 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  wral 3058  {crab 3429  Vcvv 3471  wss 3947   class class class wbr 5148   Se wse 5631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rab 3430  df-v 3473  df-in 3954  df-ss 3964  df-br 5149  df-se 5634
This theorem is referenced by:  seeq1  5650
  Copyright terms: Public domain W3C validator