![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sess1 | Structured version Visualization version GIF version |
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
sess1 | ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . 6 ⊢ ((𝑅 ⊆ 𝑆 ∧ 𝑦 ∈ 𝐴) → 𝑅 ⊆ 𝑆) | |
2 | 1 | ssbrd 5182 | . . . . 5 ⊢ ((𝑅 ⊆ 𝑆 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑥 → 𝑦𝑆𝑥)) |
3 | 2 | ss2rabdv 4066 | . . . 4 ⊢ (𝑅 ⊆ 𝑆 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥}) |
4 | ssexg 5314 | . . . . 5 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∧ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
5 | 4 | ex 412 | . . . 4 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
7 | 6 | ralimdv 3161 | . 2 ⊢ (𝑅 ⊆ 𝑆 → (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
8 | df-se 5623 | . 2 ⊢ (𝑆 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V) | |
9 | df-se 5623 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
10 | 7, 8, 9 | 3imtr4g 296 | 1 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∀wral 3053 {crab 3424 Vcvv 3466 ⊆ wss 3941 class class class wbr 5139 Se wse 5620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rab 3425 df-v 3468 df-in 3948 df-ss 3958 df-br 5140 df-se 5623 |
This theorem is referenced by: seeq1 5639 |
Copyright terms: Public domain | W3C validator |