MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sess1 Structured version   Visualization version   GIF version

Theorem sess1 5524
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess1 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))

Proof of Theorem sess1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . . . 6 ((𝑅𝑆𝑦𝐴) → 𝑅𝑆)
21ssbrd 5101 . . . . 5 ((𝑅𝑆𝑦𝐴) → (𝑦𝑅𝑥𝑦𝑆𝑥))
32ss2rabdv 3994 . . . 4 (𝑅𝑆 → {𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥})
4 ssexg 5221 . . . . 5 (({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥} ∧ {𝑦𝐴𝑦𝑆𝑥} ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
54ex 416 . . . 4 ({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥} → ({𝑦𝐴𝑦𝑆𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
63, 5syl 17 . . 3 (𝑅𝑆 → ({𝑦𝐴𝑦𝑆𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
76ralimdv 3101 . 2 (𝑅𝑆 → (∀𝑥𝐴 {𝑦𝐴𝑦𝑆𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
8 df-se 5515 . 2 (𝑆 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑆𝑥} ∈ V)
9 df-se 5515 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 93imtr4g 299 1 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2110  wral 3061  {crab 3065  Vcvv 3413  wss 3871   class class class wbr 5058   Se wse 5512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rab 3070  df-v 3415  df-in 3878  df-ss 3888  df-br 5059  df-se 5515
This theorem is referenced by:  seeq1  5528
  Copyright terms: Public domain W3C validator