MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sess1 Structured version   Visualization version   GIF version

Theorem sess1 5548
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess1 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))

Proof of Theorem sess1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝑅𝑆𝑦𝐴) → 𝑅𝑆)
21ssbrd 5113 . . . . 5 ((𝑅𝑆𝑦𝐴) → (𝑦𝑅𝑥𝑦𝑆𝑥))
32ss2rabdv 4005 . . . 4 (𝑅𝑆 → {𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥})
4 ssexg 5242 . . . . 5 (({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥} ∧ {𝑦𝐴𝑦𝑆𝑥} ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
54ex 412 . . . 4 ({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥} → ({𝑦𝐴𝑦𝑆𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
63, 5syl 17 . . 3 (𝑅𝑆 → ({𝑦𝐴𝑦𝑆𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
76ralimdv 3103 . 2 (𝑅𝑆 → (∀𝑥𝐴 {𝑦𝐴𝑦𝑆𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
8 df-se 5536 . 2 (𝑆 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑆𝑥} ∈ V)
9 df-se 5536 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 93imtr4g 295 1 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883   class class class wbr 5070   Se wse 5533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-se 5536
This theorem is referenced by:  seeq1  5552
  Copyright terms: Public domain W3C validator