Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaex | Structured version Visualization version GIF version |
Description: Lemma for issiga 32129 and isrnsiga 32130. The class of sigma-algebras with base set 𝑜 is a set. Note: a more generic version with (𝑂 ∈ V → ...) could be useful for sigaval 32128. (Contributed by Thierry Arnoux, 24-Oct-2016.) |
Ref | Expression |
---|---|
sigaex | ⊢ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3306 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠))} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} | |
2 | velpw 4544 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝒫 𝑜 ↔ 𝑠 ⊆ 𝒫 𝑜) | |
3 | 2 | anbi1i 625 | . . . 4 ⊢ ((𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠))) ↔ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))) |
4 | 3 | abbii 2806 | . . 3 ⊢ {𝑠 ∣ (𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} = {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} |
5 | 1, 4 | eqtri 2764 | . 2 ⊢ {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠))} = {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} |
6 | vex 3441 | . . . 4 ⊢ 𝑜 ∈ V | |
7 | pwexg 5310 | . . . 4 ⊢ (𝑜 ∈ V → 𝒫 𝑜 ∈ V) | |
8 | pwexg 5310 | . . . 4 ⊢ (𝒫 𝑜 ∈ V → 𝒫 𝒫 𝑜 ∈ V) | |
9 | 6, 7, 8 | mp2b 10 | . . 3 ⊢ 𝒫 𝒫 𝑜 ∈ V |
10 | 9 | rabex 5265 | . 2 ⊢ {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠))} ∈ V |
11 | 5, 10 | eqeltrri 2834 | 1 ⊢ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 {cab 2713 ∀wral 3062 {crab 3303 Vcvv 3437 ∖ cdif 3889 ⊆ wss 3892 𝒫 cpw 4539 ∪ cuni 4844 class class class wbr 5081 ωcom 7744 ≼ cdom 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-pow 5297 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-in 3899 df-ss 3909 df-pw 4541 |
This theorem is referenced by: issiga 32129 isrnsiga 32130 |
Copyright terms: Public domain | W3C validator |