![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaex | Structured version Visualization version GIF version |
Description: Lemma for issiga 33110 and isrnsiga 33111. The class of sigma-algebras with base set 𝑜 is a set. Note: a more generic version with (𝑂 ∈ V → ...) could be useful for sigaval 33109. (Contributed by Thierry Arnoux, 24-Oct-2016.) |
Ref | Expression |
---|---|
sigaex | ⊢ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3434 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠))} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} | |
2 | velpw 4608 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝒫 𝑜 ↔ 𝑠 ⊆ 𝒫 𝑜) | |
3 | 2 | anbi1i 625 | . . . 4 ⊢ ((𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠))) ↔ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))) |
4 | 3 | abbii 2803 | . . 3 ⊢ {𝑠 ∣ (𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} = {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} |
5 | 1, 4 | eqtri 2761 | . 2 ⊢ {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠))} = {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} |
6 | vex 3479 | . . . 4 ⊢ 𝑜 ∈ V | |
7 | pwexg 5377 | . . . 4 ⊢ (𝑜 ∈ V → 𝒫 𝑜 ∈ V) | |
8 | pwexg 5377 | . . . 4 ⊢ (𝒫 𝑜 ∈ V → 𝒫 𝒫 𝑜 ∈ V) | |
9 | 6, 7, 8 | mp2b 10 | . . 3 ⊢ 𝒫 𝒫 𝑜 ∈ V |
10 | 9 | rabex 5333 | . 2 ⊢ {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠))} ∈ V |
11 | 5, 10 | eqeltrri 2831 | 1 ⊢ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 {cab 2710 ∀wral 3062 {crab 3433 Vcvv 3475 ∖ cdif 3946 ⊆ wss 3949 𝒫 cpw 4603 ∪ cuni 4909 class class class wbr 5149 ωcom 7855 ≼ cdom 8937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-pow 5364 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 |
This theorem is referenced by: issiga 33110 isrnsiga 33111 |
Copyright terms: Public domain | W3C validator |