Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaex Structured version   Visualization version   GIF version

Theorem sigaex 32376
Description: Lemma for issiga 32378 and isrnsiga 32379. The class of sigma-algebras with base set 𝑜 is a set. Note: a more generic version with (𝑂 ∈ V → ...) could be useful for sigaval 32377. (Contributed by Thierry Arnoux, 24-Oct-2016.)
Assertion
Ref Expression
sigaex {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} ∈ V
Distinct variable group:   𝑜,𝑠

Proof of Theorem sigaex
StepHypRef Expression
1 df-rab 3404 . . 3 {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))}
2 velpw 4553 . . . . 5 (𝑠 ∈ 𝒫 𝒫 𝑜𝑠 ⊆ 𝒫 𝑜)
32anbi1i 624 . . . 4 ((𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))) ↔ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))))
43abbii 2806 . . 3 {𝑠 ∣ (𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} = {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))}
51, 4eqtri 2764 . 2 {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))} = {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))}
6 vex 3445 . . . 4 𝑜 ∈ V
7 pwexg 5322 . . . 4 (𝑜 ∈ V → 𝒫 𝑜 ∈ V)
8 pwexg 5322 . . . 4 (𝒫 𝑜 ∈ V → 𝒫 𝒫 𝑜 ∈ V)
96, 7, 8mp2b 10 . . 3 𝒫 𝒫 𝑜 ∈ V
109rabex 5277 . 2 {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))} ∈ V
115, 10eqeltrri 2834 1 {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2105  {cab 2713  wral 3061  {crab 3403  Vcvv 3441  cdif 3895  wss 3898  𝒫 cpw 4548   cuni 4853   class class class wbr 5093  ωcom 7781  cdom 8803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5244  ax-pow 5309
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-in 3905  df-ss 3915  df-pw 4550
This theorem is referenced by:  issiga  32378  isrnsiga  32379
  Copyright terms: Public domain W3C validator