Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaex Structured version   Visualization version   GIF version

Theorem sigaex 34087
Description: Lemma for issiga 34089 and isrnsiga 34090. The class of sigma-algebras with base set 𝑜 is a set. Note: a more generic version with (𝑂 ∈ V → ...) could be useful for sigaval 34088. (Contributed by Thierry Arnoux, 24-Oct-2016.)
Assertion
Ref Expression
sigaex {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} ∈ V
Distinct variable group:   𝑜,𝑠

Proof of Theorem sigaex
StepHypRef Expression
1 df-rab 3416 . . 3 {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))}
2 velpw 4580 . . . . 5 (𝑠 ∈ 𝒫 𝒫 𝑜𝑠 ⊆ 𝒫 𝑜)
32anbi1i 624 . . . 4 ((𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))) ↔ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))))
43abbii 2802 . . 3 {𝑠 ∣ (𝑠 ∈ 𝒫 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} = {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))}
51, 4eqtri 2758 . 2 {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))} = {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))}
6 vex 3463 . . . 4 𝑜 ∈ V
7 pwexg 5348 . . . 4 (𝑜 ∈ V → 𝒫 𝑜 ∈ V)
8 pwexg 5348 . . . 4 (𝒫 𝑜 ∈ V → 𝒫 𝒫 𝑜 ∈ V)
96, 7, 8mp2b 10 . . 3 𝒫 𝒫 𝑜 ∈ V
109rabex 5309 . 2 {𝑠 ∈ 𝒫 𝒫 𝑜 ∣ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))} ∈ V
115, 10eqeltrri 2831 1 {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2108  {cab 2713  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  wss 3926  𝒫 cpw 4575   cuni 4883   class class class wbr 5119  ωcom 7859  cdom 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-pow 5335
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-in 3933  df-ss 3943  df-pw 4577
This theorem is referenced by:  issiga  34089  isrnsiga  34090
  Copyright terms: Public domain W3C validator