![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrnsiga | Structured version Visualization version GIF version |
Description: The property of being a sigma-algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016.) (Proof shortened by Thierry Arnoux, 23-Oct-2016.) |
Ref | Expression |
---|---|
isrnsiga | ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-siga 33761 | . . 3 ⊢ sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))}) | |
2 | sigaex 33762 | . . 3 ⊢ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} ∈ V | |
3 | sseq1 4007 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠 ⊆ 𝒫 𝑜 ↔ 𝑆 ⊆ 𝒫 𝑜)) | |
4 | eleq2 2818 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑜 ∈ 𝑠 ↔ 𝑜 ∈ 𝑆)) | |
5 | eleq2 2818 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝑜 ∖ 𝑥) ∈ 𝑠 ↔ (𝑜 ∖ 𝑥) ∈ 𝑆)) | |
6 | 5 | raleqbi1dv 3331 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) |
7 | pweq 4620 | . . . . . 6 ⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) | |
8 | eleq2 2818 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (∪ 𝑥 ∈ 𝑠 ↔ ∪ 𝑥 ∈ 𝑆)) | |
9 | 8 | imbi2d 339 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠) ↔ (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
10 | 7, 9 | raleqbidv 3340 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
11 | 4, 6, 10 | 3anbi123d 1432 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)) ↔ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
12 | 3, 11 | anbi12d 630 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠))) ↔ (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) |
13 | 1, 2, 12 | abfmpunirn 32459 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) |
14 | rexv 3499 | . . 3 ⊢ (∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) ↔ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) | |
15 | 14 | anbi2i 621 | . 2 ⊢ ((𝑆 ∈ V ∧ ∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) |
16 | 13, 15 | bitri 274 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∀wral 3058 ∃wrex 3067 Vcvv 3473 ∖ cdif 3946 ⊆ wss 3949 𝒫 cpw 4606 ∪ cuni 4912 class class class wbr 5152 ran crn 5683 ωcom 7876 ≼ cdom 8968 sigAlgebracsiga 33760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-fv 6561 df-siga 33761 |
This theorem is referenced by: 0elsiga 33766 sigaclcu 33769 issgon 33775 |
Copyright terms: Public domain | W3C validator |