Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnsiga Structured version   Visualization version   GIF version

Theorem isrnsiga 34144
Description: The property of being a sigma-algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016.) (Proof shortened by Thierry Arnoux, 23-Oct-2016.)
Assertion
Ref Expression
isrnsiga (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
Distinct variable group:   𝑥,𝑜,𝑆

Proof of Theorem isrnsiga
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-siga 34140 . . 3 sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))})
2 sigaex 34141 . . 3 {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} ∈ V
3 sseq1 3984 . . . 4 (𝑠 = 𝑆 → (𝑠 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑜))
4 eleq2 2823 . . . . 5 (𝑠 = 𝑆 → (𝑜𝑠𝑜𝑆))
5 eleq2 2823 . . . . . 6 (𝑠 = 𝑆 → ((𝑜𝑥) ∈ 𝑠 ↔ (𝑜𝑥) ∈ 𝑆))
65raleqbi1dv 3317 . . . . 5 (𝑠 = 𝑆 → (∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ↔ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
7 pweq 4589 . . . . . 6 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
8 eleq2 2823 . . . . . . 7 (𝑠 = 𝑆 → ( 𝑥𝑠 𝑥𝑆))
98imbi2d 340 . . . . . 6 (𝑠 = 𝑆 → ((𝑥 ≼ ω → 𝑥𝑠) ↔ (𝑥 ≼ ω → 𝑥𝑆)))
107, 9raleqbidv 3325 . . . . 5 (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
114, 6, 103anbi123d 1438 . . . 4 (𝑠 = 𝑆 → ((𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)) ↔ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
123, 11anbi12d 632 . . 3 (𝑠 = 𝑆 → ((𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))) ↔ (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
131, 2, 12abfmpunirn 32630 . 2 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
14 rexv 3488 . . 3 (∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
1514anbi2i 623 . 2 ((𝑆 ∈ V ∧ ∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))) ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
1613, 15bitri 275 1 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  wss 3926  𝒫 cpw 4575   cuni 4883   class class class wbr 5119  ran crn 5655  ωcom 7861  cdom 8957  sigAlgebracsiga 34139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-siga 34140
This theorem is referenced by:  0elsiga  34145  sigaclcu  34148  issgon  34154
  Copyright terms: Public domain W3C validator