Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnsiga Structured version   Visualization version   GIF version

Theorem isrnsiga 33765
Description: The property of being a sigma-algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016.) (Proof shortened by Thierry Arnoux, 23-Oct-2016.)
Assertion
Ref Expression
isrnsiga (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
Distinct variable group:   𝑥,𝑜,𝑆

Proof of Theorem isrnsiga
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-siga 33761 . . 3 sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))})
2 sigaex 33762 . . 3 {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} ∈ V
3 sseq1 4007 . . . 4 (𝑠 = 𝑆 → (𝑠 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑜))
4 eleq2 2818 . . . . 5 (𝑠 = 𝑆 → (𝑜𝑠𝑜𝑆))
5 eleq2 2818 . . . . . 6 (𝑠 = 𝑆 → ((𝑜𝑥) ∈ 𝑠 ↔ (𝑜𝑥) ∈ 𝑆))
65raleqbi1dv 3331 . . . . 5 (𝑠 = 𝑆 → (∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ↔ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
7 pweq 4620 . . . . . 6 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
8 eleq2 2818 . . . . . . 7 (𝑠 = 𝑆 → ( 𝑥𝑠 𝑥𝑆))
98imbi2d 339 . . . . . 6 (𝑠 = 𝑆 → ((𝑥 ≼ ω → 𝑥𝑠) ↔ (𝑥 ≼ ω → 𝑥𝑆)))
107, 9raleqbidv 3340 . . . . 5 (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
114, 6, 103anbi123d 1432 . . . 4 (𝑠 = 𝑆 → ((𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)) ↔ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
123, 11anbi12d 630 . . 3 (𝑠 = 𝑆 → ((𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))) ↔ (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
131, 2, 12abfmpunirn 32459 . 2 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
14 rexv 3499 . . 3 (∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) ↔ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
1514anbi2i 621 . 2 ((𝑆 ∈ V ∧ ∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))) ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
1613, 15bitri 274 1 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wral 3058  wrex 3067  Vcvv 3473  cdif 3946  wss 3949  𝒫 cpw 4606   cuni 4912   class class class wbr 5152  ran crn 5683  ωcom 7876  cdom 8968  sigAlgebracsiga 33760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561  df-siga 33761
This theorem is referenced by:  0elsiga  33766  sigaclcu  33769  issgon  33775
  Copyright terms: Public domain W3C validator