![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrnsiga | Structured version Visualization version GIF version |
Description: The property of being a sigma-algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016.) (Proof shortened by Thierry Arnoux, 23-Oct-2016.) |
Ref | Expression |
---|---|
isrnsiga | ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-siga 30687 | . . 3 ⊢ sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))}) | |
2 | sigaex 30688 | . . 3 ⊢ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)))} ∈ V | |
3 | sseq1 3822 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠 ⊆ 𝒫 𝑜 ↔ 𝑆 ⊆ 𝒫 𝑜)) | |
4 | eleq2 2867 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑜 ∈ 𝑠 ↔ 𝑜 ∈ 𝑆)) | |
5 | eleq2 2867 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝑜 ∖ 𝑥) ∈ 𝑠 ↔ (𝑜 ∖ 𝑥) ∈ 𝑆)) | |
6 | 5 | raleqbi1dv 3329 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) |
7 | pweq 4352 | . . . . . 6 ⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) | |
8 | eleq2 2867 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (∪ 𝑥 ∈ 𝑠 ↔ ∪ 𝑥 ∈ 𝑆)) | |
9 | 8 | imbi2d 332 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠) ↔ (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
10 | 7, 9 | raleqbidv 3335 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
11 | 4, 6, 10 | 3anbi123d 1561 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠)) ↔ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
12 | 3, 11 | anbi12d 625 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠))) ↔ (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) |
13 | 1, 2, 12 | abfmpunirn 29971 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) |
14 | rexv 3408 | . . 3 ⊢ (∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) ↔ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) | |
15 | 14 | anbi2i 617 | . 2 ⊢ ((𝑆 ∈ V ∧ ∃𝑜 ∈ V (𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) |
16 | 13, 15 | bitri 267 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∃wex 1875 ∈ wcel 2157 ∀wral 3089 ∃wrex 3090 Vcvv 3385 ∖ cdif 3766 ⊆ wss 3769 𝒫 cpw 4349 ∪ cuni 4628 class class class wbr 4843 ran crn 5313 ωcom 7299 ≼ cdom 8193 sigAlgebracsiga 30686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-fv 6109 df-siga 30687 |
This theorem is referenced by: 0elsiga 30693 sigaclcu 30696 issgon 30702 |
Copyright terms: Public domain | W3C validator |