MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp211 Structured version   Visualization version   GIF version

Theorem simp211 1310
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp211 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜑)

Proof of Theorem simp211
StepHypRef Expression
1 simp11 1202 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
213ad2ant2 1133 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  cdleme27a  38381  cdlemk5u  38875  cdlemk6u  38876  cdlemk7u  38884  cdlemk11u  38885  cdlemk12u  38886  cdlemk7u-2N  38902  cdlemk11u-2N  38903  cdlemk12u-2N  38904  cdlemk20-2N  38906  cdlemk22  38907  cdlemk33N  38923  cdlemk53b  38970  cdlemk53  38971  cdlemk55a  38973  cdlemkyyN  38976  cdlemk43N  38977
  Copyright terms: Public domain W3C validator