MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp211 Structured version   Visualization version   GIF version

Theorem simp211 1312
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp211 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜑)

Proof of Theorem simp211
StepHypRef Expression
1 simp11 1204 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
213ad2ant2 1135 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090
This theorem is referenced by:  cdleme27a  38001  cdlemk5u  38495  cdlemk6u  38496  cdlemk7u  38504  cdlemk11u  38505  cdlemk12u  38506  cdlemk7u-2N  38522  cdlemk11u-2N  38523  cdlemk12u-2N  38524  cdlemk20-2N  38526  cdlemk22  38527  cdlemk33N  38543  cdlemk53b  38590  cdlemk53  38591  cdlemk55a  38593  cdlemkyyN  38596  cdlemk43N  38597
  Copyright terms: Public domain W3C validator