Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp211 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp211 | ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1202 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) | |
2 | 1 | 3ad2ant2 1133 | 1 ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: cdleme27a 38381 cdlemk5u 38875 cdlemk6u 38876 cdlemk7u 38884 cdlemk11u 38885 cdlemk12u 38886 cdlemk7u-2N 38902 cdlemk11u-2N 38903 cdlemk12u-2N 38904 cdlemk20-2N 38906 cdlemk22 38907 cdlemk33N 38923 cdlemk53b 38970 cdlemk53 38971 cdlemk55a 38973 cdlemkyyN 38976 cdlemk43N 38977 |
Copyright terms: Public domain | W3C validator |