![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp211 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp211 | ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1264 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) | |
2 | 1 | 3ad2ant2 1168 | 1 ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1113 |
This theorem is referenced by: cdleme27a 36437 cdlemk5u 36931 cdlemk6u 36932 cdlemk7u 36940 cdlemk11u 36941 cdlemk12u 36942 cdlemk7u-2N 36958 cdlemk11u-2N 36959 cdlemk12u-2N 36960 cdlemk20-2N 36962 cdlemk22 36963 cdlemk33N 36979 cdlemk53b 37026 cdlemk53 37027 cdlemk55a 37029 cdlemkyyN 37032 cdlemk43N 37033 |
Copyright terms: Public domain | W3C validator |