Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp211 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp211 | ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1204 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) | |
2 | 1 | 3ad2ant2 1135 | 1 ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: cdleme27a 38001 cdlemk5u 38495 cdlemk6u 38496 cdlemk7u 38504 cdlemk11u 38505 cdlemk12u 38506 cdlemk7u-2N 38522 cdlemk11u-2N 38523 cdlemk12u-2N 38524 cdlemk20-2N 38526 cdlemk22 38527 cdlemk33N 38543 cdlemk53b 38590 cdlemk53 38591 cdlemk55a 38593 cdlemkyyN 38596 cdlemk43N 38597 |
Copyright terms: Public domain | W3C validator |