Proof of Theorem cdlemk43N
Step | Hyp | Ref
| Expression |
1 | | simp213 1311 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → 𝐹 ≠ 𝑁) |
2 | | simp22l 1290 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → 𝐺 ∈ 𝑇) |
3 | | cdlemk5.x |
. . . . 5
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
4 | | cdlemk5.u |
. . . . 5
⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
5 | 3, 4 | cdlemk40f 38860 |
. . . 4
⊢ ((𝐹 ≠ 𝑁 ∧ 𝐺 ∈ 𝑇) → (𝑈‘𝐺) = ⦋𝐺 / 𝑔⦌𝑋) |
6 | 1, 2, 5 | syl2anc 583 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → (𝑈‘𝐺) = ⦋𝐺 / 𝑔⦌𝑋) |
7 | 6 | fveq1d 6758 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → ((𝑈‘𝐺)‘𝑃) = (⦋𝐺 / 𝑔⦌𝑋‘𝑃)) |
8 | | simp1l 1195 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | | simp211 1309 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → 𝐹 ∈ 𝑇) |
10 | | simp212 1310 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → 𝑁 ∈ 𝑇) |
11 | | simp1r 1196 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → (𝑅‘𝐹) = (𝑅‘𝑁)) |
12 | | cdlemk5.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
13 | | cdlemk5.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
14 | | cdlemk5.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
15 | | cdlemk5.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
16 | 12, 13, 14, 15 | trlnid 38120 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐹 ≠ 𝑁 ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → 𝐹 ≠ ( I ↾ 𝐵)) |
17 | 8, 9, 10, 1, 11, 16 | syl122anc 1377 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → 𝐹 ≠ ( I ↾ 𝐵)) |
18 | 9, 17 | jca 511 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) |
19 | | simp22 1205 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) |
20 | | simp23 1206 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
21 | | simp3 1136 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) |
22 | | cdlemk5.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
23 | | cdlemk5.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
24 | | cdlemk5.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
25 | | cdlemk5.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
26 | | cdlemk5.z |
. . . 4
⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
27 | | cdlemk5.y |
. . . 4
⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
28 | 12, 22, 23, 24, 25, 13, 14, 15, 26, 27, 3 | cdlemk42 38882 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌) |
29 | 8, 18, 19, 10, 20, 11, 21, 28 | syl331anc 1393 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌) |
30 | 7, 29 | eqtrd 2778 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → ((𝑈‘𝐺)‘𝑃) = ⦋𝐺 / 𝑔⦌𝑌) |