MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp212 Structured version   Visualization version   GIF version

Theorem simp212 1313
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp212 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜓)

Proof of Theorem simp212
StepHypRef Expression
1 simp12 1205 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
213ad2ant2 1134 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  cdleme27a  40334  cdlemk5u  40828  cdlemk6u  40829  cdlemk7u  40837  cdlemk11u  40838  cdlemk12u  40839  cdlemk7u-2N  40855  cdlemk11u-2N  40856  cdlemk12u-2N  40857  cdlemk20-2N  40859  cdlemk22  40860  cdlemk22-3  40868  cdlemk33N  40876  cdlemk53b  40923  cdlemk53  40924  cdlemk55a  40926  cdlemkyyN  40929  cdlemk43N  40930
  Copyright terms: Public domain W3C validator