Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp212 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp212 | ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp12 1202 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: cdleme27a 38360 cdlemk5u 38854 cdlemk6u 38855 cdlemk7u 38863 cdlemk11u 38864 cdlemk12u 38865 cdlemk7u-2N 38881 cdlemk11u-2N 38882 cdlemk12u-2N 38883 cdlemk20-2N 38885 cdlemk22 38886 cdlemk22-3 38894 cdlemk33N 38902 cdlemk53b 38949 cdlemk53 38950 cdlemk55a 38952 cdlemkyyN 38955 cdlemk43N 38956 |
Copyright terms: Public domain | W3C validator |