MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp212 Structured version   Visualization version   GIF version

Theorem simp212 1313
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp212 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜓)

Proof of Theorem simp212
StepHypRef Expression
1 simp12 1205 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
213ad2ant2 1134 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  cdleme27a  40539  cdlemk5u  41033  cdlemk6u  41034  cdlemk7u  41042  cdlemk11u  41043  cdlemk12u  41044  cdlemk7u-2N  41060  cdlemk11u-2N  41061  cdlemk12u-2N  41062  cdlemk20-2N  41064  cdlemk22  41065  cdlemk22-3  41073  cdlemk33N  41081  cdlemk53b  41128  cdlemk53  41129  cdlemk55a  41131  cdlemkyyN  41134  cdlemk43N  41135
  Copyright terms: Public domain W3C validator