MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp212 Structured version   Visualization version   GIF version

Theorem simp212 1310
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp212 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜓)

Proof of Theorem simp212
StepHypRef Expression
1 simp12 1202 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
213ad2ant2 1132 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  cdleme27a  38360  cdlemk5u  38854  cdlemk6u  38855  cdlemk7u  38863  cdlemk11u  38864  cdlemk12u  38865  cdlemk7u-2N  38881  cdlemk11u-2N  38882  cdlemk12u-2N  38883  cdlemk20-2N  38885  cdlemk22  38886  cdlemk22-3  38894  cdlemk33N  38902  cdlemk53b  38949  cdlemk53  38950  cdlemk55a  38952  cdlemkyyN  38955  cdlemk43N  38956
  Copyright terms: Public domain W3C validator