Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk55a Structured version   Visualization version   GIF version

Theorem cdlemk55a 36734
Description: Lemma for cdlemk55 36736. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk55a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧   𝑗,𝑏,𝑔,𝑧
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)   𝑃(𝑗)   𝑅(𝑗)   𝑇(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝐻(𝑗)   𝐼(𝑗)   (𝑗)   𝐾(𝑗)   (𝑗)   (𝑗)   𝑁(𝑗)   𝑊(𝑗)   𝑋(𝑧,𝑔,𝑗,𝑏)   𝑌(𝑔,𝑗,𝑏)   𝑍(𝑧,𝑗,𝑏)

Proof of Theorem cdlemk55a
StepHypRef Expression
1 simp1l 1247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp211 1403 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐹𝑇)
3 simp212 1404 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐹 ≠ ( I ↾ 𝐵))
42, 3jca 503 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
5 simp32 1260 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗𝑇)
6 simp213 1405 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑁𝑇)
7 simp23 1258 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp1r 1248 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅𝐹) = (𝑅𝑁))
97, 8jca 503 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
10 cdlemk5.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
11 cdlemk5.l . . . . . . . . 9 = (le‘𝐾)
12 cdlemk5.j . . . . . . . . 9 = (join‘𝐾)
13 cdlemk5.m . . . . . . . . 9 = (meet‘𝐾)
14 cdlemk5.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
15 cdlemk5.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
16 cdlemk5.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 cdlemk5.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
18 cdlemk5.z . . . . . . . . 9 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
19 cdlemk5.y . . . . . . . . 9 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
20 cdlemk5.x . . . . . . . . 9 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 36713 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑗𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑗 / 𝑔𝑋𝑇)
221, 4, 5, 6, 9, 21syl131anc 1495 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗 / 𝑔𝑋𝑇)
2310, 15, 16ltrn1o 35899 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑗 / 𝑔𝑋𝑇) → 𝑗 / 𝑔𝑋:𝐵1-1-onto𝐵)
241, 22, 23syl2anc 575 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗 / 𝑔𝑋:𝐵1-1-onto𝐵)
25 f1ococnv2 6375 . . . . . 6 (𝑗 / 𝑔𝑋:𝐵1-1-onto𝐵 → (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋) = ( I ↾ 𝐵))
2624, 25syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋) = ( I ↾ 𝐵))
2726coeq2d 5486 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋 ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)) = ((𝐺𝐼) / 𝑔𝑋 ∘ ( I ↾ 𝐵)))
28 simp22 1257 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐺𝑇)
29 simp31l 1388 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐼𝑇)
3015, 16ltrnco 36494 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐼𝑇) → (𝐺𝐼) ∈ 𝑇)
311, 28, 29, 30syl3anc 1483 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) ∈ 𝑇)
3210, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 36713 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝐼) ∈ 𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐺𝐼) / 𝑔𝑋𝑇)
331, 4, 31, 6, 9, 32syl131anc 1495 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋𝑇)
3410, 15, 16ltrn1o 35899 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐼) / 𝑔𝑋𝑇) → (𝐺𝐼) / 𝑔𝑋:𝐵1-1-onto𝐵)
351, 33, 34syl2anc 575 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋:𝐵1-1-onto𝐵)
36 f1of 6349 . . . . 5 ((𝐺𝐼) / 𝑔𝑋:𝐵1-1-onto𝐵(𝐺𝐼) / 𝑔𝑋:𝐵𝐵)
37 fcoi1 6289 . . . . 5 ((𝐺𝐼) / 𝑔𝑋:𝐵𝐵 → ((𝐺𝐼) / 𝑔𝑋 ∘ ( I ↾ 𝐵)) = (𝐺𝐼) / 𝑔𝑋)
3835, 36, 373syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋 ∘ ( I ↾ 𝐵)) = (𝐺𝐼) / 𝑔𝑋)
3927, 38eqtr2d 2841 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = ((𝐺𝐼) / 𝑔𝑋 ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)))
40 coass 5868 . . 3 (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = ((𝐺𝐼) / 𝑔𝑋 ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋))
4139, 40syl6eqr 2858 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
4210, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk54 36733 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
4342coeq1d 5485 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
44 coass 5868 . . . 4 (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋))
4526coeq2d 5486 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ ( I ↾ 𝐵)))
4610, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 36713 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇)
471, 4, 28, 6, 9, 46syl131anc 1495 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐺 / 𝑔𝑋𝑇)
4810, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 36713 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐼𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐼 / 𝑔𝑋𝑇)
491, 4, 29, 6, 9, 48syl131anc 1495 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐼 / 𝑔𝑋𝑇)
5015, 16ltrnco 36494 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇𝐼 / 𝑔𝑋𝑇) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇)
511, 47, 49, 50syl3anc 1483 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇)
5210, 15, 16ltrn1o 35899 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵1-1-onto𝐵)
531, 51, 52syl2anc 575 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵1-1-onto𝐵)
54 f1of 6349 . . . . . 6 ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵1-1-onto𝐵 → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵𝐵)
55 fcoi1 6289 . . . . . 6 ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵𝐵 → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ ( I ↾ 𝐵)) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5653, 54, 553syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ ( I ↾ 𝐵)) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5745, 56eqtrd 2840 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5844, 57syl5eq 2852 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5943, 58eqtrd 2840 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
6041, 59eqtrd 2840 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wral 3096  csb 3728   class class class wbr 4844   I cid 5218  ccnv 5310  cres 5313  ccom 5315  wf 6093  1-1-ontowf1o 6096  cfv 6097  crio 6830  (class class class)co 6870  Basecbs 16064  lecple 16156  joincjn 17145  meetcmee 17146  Atomscatm 35038  HLchlt 35125  LHypclh 35759  LTrncltrn 35876  trLctrl 35933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-riotaBAD 34727
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-1st 7394  df-2nd 7395  df-undef 7630  df-map 8090  df-proset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34951  df-ol 34953  df-oml 34954  df-covers 35041  df-ats 35042  df-atl 35073  df-cvlat 35097  df-hlat 35126  df-llines 35273  df-lplanes 35274  df-lvols 35275  df-lines 35276  df-psubsp 35278  df-pmap 35279  df-padd 35571  df-lhyp 35763  df-laut 35764  df-ldil 35879  df-ltrn 35880  df-trl 35934
This theorem is referenced by:  cdlemk55b  36735
  Copyright terms: Public domain W3C validator