Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk55a Structured version   Visualization version   GIF version

Theorem cdlemk55a 40960
Description: Lemma for cdlemk55 40962. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk55a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧   𝑗,𝑏,𝑔,𝑧
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)   𝑃(𝑗)   𝑅(𝑗)   𝑇(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝐻(𝑗)   𝐼(𝑗)   (𝑗)   𝐾(𝑗)   (𝑗)   (𝑗)   𝑁(𝑗)   𝑊(𝑗)   𝑋(𝑧,𝑔,𝑗,𝑏)   𝑌(𝑔,𝑗,𝑏)   𝑍(𝑧,𝑗,𝑏)

Proof of Theorem cdlemk55a
StepHypRef Expression
1 simp1l 1198 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp211 1312 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐹𝑇)
3 simp212 1313 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐹 ≠ ( I ↾ 𝐵))
42, 3jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
5 simp32 1211 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗𝑇)
6 simp213 1314 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑁𝑇)
7 simp23 1209 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp1r 1199 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅𝐹) = (𝑅𝑁))
97, 8jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
10 cdlemk5.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
11 cdlemk5.l . . . . . . . . 9 = (le‘𝐾)
12 cdlemk5.j . . . . . . . . 9 = (join‘𝐾)
13 cdlemk5.m . . . . . . . . 9 = (meet‘𝐾)
14 cdlemk5.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
15 cdlemk5.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
16 cdlemk5.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 cdlemk5.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
18 cdlemk5.z . . . . . . . . 9 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
19 cdlemk5.y . . . . . . . . 9 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
20 cdlemk5.x . . . . . . . . 9 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 40939 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑗𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑗 / 𝑔𝑋𝑇)
221, 4, 5, 6, 9, 21syl131anc 1385 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗 / 𝑔𝑋𝑇)
2310, 15, 16ltrn1o 40125 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑗 / 𝑔𝑋𝑇) → 𝑗 / 𝑔𝑋:𝐵1-1-onto𝐵)
241, 22, 23syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗 / 𝑔𝑋:𝐵1-1-onto𝐵)
25 f1ococnv2 6830 . . . . . 6 (𝑗 / 𝑔𝑋:𝐵1-1-onto𝐵 → (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋) = ( I ↾ 𝐵))
2624, 25syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋) = ( I ↾ 𝐵))
2726coeq2d 5829 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋 ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)) = ((𝐺𝐼) / 𝑔𝑋 ∘ ( I ↾ 𝐵)))
28 simp22 1208 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐺𝑇)
29 simp31l 1297 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐼𝑇)
3015, 16ltrnco 40720 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐼𝑇) → (𝐺𝐼) ∈ 𝑇)
311, 28, 29, 30syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) ∈ 𝑇)
3210, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 40939 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝐼) ∈ 𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐺𝐼) / 𝑔𝑋𝑇)
331, 4, 31, 6, 9, 32syl131anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋𝑇)
3410, 15, 16ltrn1o 40125 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐼) / 𝑔𝑋𝑇) → (𝐺𝐼) / 𝑔𝑋:𝐵1-1-onto𝐵)
351, 33, 34syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋:𝐵1-1-onto𝐵)
36 f1of 6803 . . . . 5 ((𝐺𝐼) / 𝑔𝑋:𝐵1-1-onto𝐵(𝐺𝐼) / 𝑔𝑋:𝐵𝐵)
37 fcoi1 6737 . . . . 5 ((𝐺𝐼) / 𝑔𝑋:𝐵𝐵 → ((𝐺𝐼) / 𝑔𝑋 ∘ ( I ↾ 𝐵)) = (𝐺𝐼) / 𝑔𝑋)
3835, 36, 373syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋 ∘ ( I ↾ 𝐵)) = (𝐺𝐼) / 𝑔𝑋)
3927, 38eqtr2d 2766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = ((𝐺𝐼) / 𝑔𝑋 ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)))
40 coass 6241 . . 3 (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = ((𝐺𝐼) / 𝑔𝑋 ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋))
4139, 40eqtr4di 2783 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
4210, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk54 40959 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
4342coeq1d 5828 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
44 coass 6241 . . . 4 (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋))
4526coeq2d 5829 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ ( I ↾ 𝐵)))
4610, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 40939 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇)
471, 4, 28, 6, 9, 46syl131anc 1385 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐺 / 𝑔𝑋𝑇)
4810, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 40939 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐼𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐼 / 𝑔𝑋𝑇)
491, 4, 29, 6, 9, 48syl131anc 1385 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐼 / 𝑔𝑋𝑇)
5015, 16ltrnco 40720 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇𝐼 / 𝑔𝑋𝑇) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇)
511, 47, 49, 50syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇)
5210, 15, 16ltrn1o 40125 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵1-1-onto𝐵)
531, 51, 52syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵1-1-onto𝐵)
54 f1of 6803 . . . . . 6 ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵1-1-onto𝐵 → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵𝐵)
55 fcoi1 6737 . . . . . 6 ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵𝐵 → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ ( I ↾ 𝐵)) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5653, 54, 553syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ ( I ↾ 𝐵)) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5745, 56eqtrd 2765 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5844, 57eqtrid 2777 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5943, 58eqtrd 2765 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
6041, 59eqtrd 2765 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  csb 3865   class class class wbr 5110   I cid 5535  ccnv 5640  cres 5643  ccom 5645  wf 6510  1-1-ontowf1o 6513  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  meetcmee 18280  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160
This theorem is referenced by:  cdlemk55b  40961
  Copyright terms: Public domain W3C validator