Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk53b Structured version   Visualization version   GIF version

Theorem cdlemk53b 40485
Description: Lemma for cdlemk53 40486. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐡 = (Baseβ€˜πΎ)
cdlemk5.l ≀ = (leβ€˜πΎ)
cdlemk5.j ∨ = (joinβ€˜πΎ)
cdlemk5.m ∧ = (meetβ€˜πΎ)
cdlemk5.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk5.h 𝐻 = (LHypβ€˜πΎ)
cdlemk5.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk5.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk5.z 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
cdlemk5.y π‘Œ = ((𝑃 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
cdlemk5.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
Assertion
Ref Expression
cdlemk53b ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ = (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹))
Distinct variable groups:   ∧ ,𝑔   ∨ ,𝑔   𝐡,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ∧ ,𝑏,𝑧   ≀ ,𝑏   𝑧,𝑔, ≀   ∨ ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐡,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   π‘Š,𝑏,𝑔,𝑧   𝑧,π‘Œ   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   π‘Œ(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk53b
StepHypRef Expression
1 simp1l 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp211 1308 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐹 ∈ 𝑇)
3 simp212 1309 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
42, 3jca 510 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)))
5 simp31 1206 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝐼 ∈ 𝑇)
6 simp213 1310 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ 𝑁 ∈ 𝑇)
7 simp23 1205 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
8 simp1r 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
9 cdlemk5.b . . . . . . . 8 𝐡 = (Baseβ€˜πΎ)
10 cdlemk5.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
11 cdlemk5.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
12 cdlemk5.m . . . . . . . 8 ∧ = (meetβ€˜πΎ)
13 cdlemk5.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
14 cdlemk5.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
15 cdlemk5.t . . . . . . . 8 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
16 cdlemk5.r . . . . . . . 8 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
17 cdlemk5.z . . . . . . . 8 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
18 cdlemk5.y . . . . . . . 8 π‘Œ = ((𝑃 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
19 cdlemk5.x . . . . . . . 8 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
209, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk35s-id 40467 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ 𝐼 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇)
211, 4, 5, 6, 7, 8, 20syl132anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇)
229, 14, 15ltrn1o 39653 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ⦋𝐼 / π‘”β¦Œπ‘‹ ∈ 𝑇) β†’ ⦋𝐼 / π‘”β¦Œπ‘‹:𝐡–1-1-onto→𝐡)
231, 21, 22syl2anc 582 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋𝐼 / π‘”β¦Œπ‘‹:𝐡–1-1-onto→𝐡)
2423adantr 479 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ ⦋𝐼 / π‘”β¦Œπ‘‹:𝐡–1-1-onto→𝐡)
25 f1of 6834 . . . 4 (⦋𝐼 / π‘”β¦Œπ‘‹:𝐡–1-1-onto→𝐡 β†’ ⦋𝐼 / π‘”β¦Œπ‘‹:𝐡⟢𝐡)
26 fcoi2 6767 . . . 4 (⦋𝐼 / π‘”β¦Œπ‘‹:𝐡⟢𝐡 β†’ (( I β†Ύ 𝐡) ∘ ⦋𝐼 / π‘”β¦Œπ‘‹) = ⦋𝐼 / π‘”β¦Œπ‘‹)
2724, 25, 263syl 18 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ (( I β†Ύ 𝐡) ∘ ⦋𝐼 / π‘”β¦Œπ‘‹) = ⦋𝐼 / π‘”β¦Œπ‘‹)
28 simpl1l 1221 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
292, 6, 83jca 1125 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)))
3029adantr 479 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)))
31 simpl23 1250 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
32 simpr 483 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ 𝐺 = ( I β†Ύ 𝐡))
339, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemkid 40465 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝐺 = ( I β†Ύ 𝐡))) β†’ ⦋𝐺 / π‘”β¦Œπ‘‹ = ( I β†Ύ 𝐡))
3428, 30, 31, 32, 33syl112anc 1371 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ ⦋𝐺 / π‘”β¦Œπ‘‹ = ( I β†Ύ 𝐡))
3534coeq1d 5858 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹) = (( I β†Ύ 𝐡) ∘ ⦋𝐼 / π‘”β¦Œπ‘‹))
3632coeq1d 5858 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ (𝐺 ∘ 𝐼) = (( I β†Ύ 𝐡) ∘ 𝐼))
37 simpl31 1251 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ 𝐼 ∈ 𝑇)
389, 14, 15ltrn1o 39653 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐼 ∈ 𝑇) β†’ 𝐼:𝐡–1-1-onto→𝐡)
3928, 37, 38syl2anc 582 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ 𝐼:𝐡–1-1-onto→𝐡)
40 f1of 6834 . . . . . 6 (𝐼:𝐡–1-1-onto→𝐡 β†’ 𝐼:𝐡⟢𝐡)
41 fcoi2 6767 . . . . . 6 (𝐼:𝐡⟢𝐡 β†’ (( I β†Ύ 𝐡) ∘ 𝐼) = 𝐼)
4239, 40, 413syl 18 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ (( I β†Ύ 𝐡) ∘ 𝐼) = 𝐼)
4336, 42eqtrd 2765 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ (𝐺 ∘ 𝐼) = 𝐼)
4443csbeq1d 3888 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ = ⦋𝐼 / π‘”β¦Œπ‘‹)
4527, 35, 443eqtr4rd 2776 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 = ( I β†Ύ 𝐡)) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ = (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹))
46 simpl1l 1221 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
474adantr 479 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)))
48 simpl22 1249 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ 𝐺 ∈ 𝑇)
49 simpr 483 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ 𝐺 β‰  ( I β†Ύ 𝐡))
5048, 49jca 510 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)))
516adantr 479 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ 𝑁 ∈ 𝑇)
52 simpl23 1250 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
53 simpl1r 1222 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
54 simpl3 1190 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ)))
559, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdlemk53a 40484 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ = (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹))
5646, 47, 50, 51, 52, 53, 54, 55syl331anc 1392 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ = (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹))
5745, 56pm2.61dane 3019 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΌ))) β†’ ⦋(𝐺 ∘ 𝐼) / π‘”β¦Œπ‘‹ = (⦋𝐺 / π‘”β¦Œπ‘‹ ∘ ⦋𝐼 / π‘”β¦Œπ‘‹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  β¦‹csb 3884   class class class wbr 5143   I cid 5569  β—‘ccnv 5671   β†Ύ cres 5674   ∘ ccom 5676  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  β„©crio 7371  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  Atomscatm 38791  HLchlt 38878  LHypclh 39513  LTrncltrn 39630  trLctrl 39687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-riotaBAD 38481
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-undef 8277  df-map 8845  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-llines 39027  df-lplanes 39028  df-lvols 39029  df-lines 39030  df-psubsp 39032  df-pmap 39033  df-padd 39325  df-lhyp 39517  df-laut 39518  df-ldil 39633  df-ltrn 39634  df-trl 39688
This theorem is referenced by:  cdlemk53  40486
  Copyright terms: Public domain W3C validator