Proof of Theorem cdlemk7u-2N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp11 1204 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐾 ∈ HL) | 
| 2 |  | simp12 1205 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑊 ∈ 𝐻) | 
| 3 | 1, 2 | jca 511 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 4 |  | simp211 1312 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ∈ 𝑇) | 
| 5 |  | simp212 1313 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐶 ∈ 𝑇) | 
| 6 |  | simp213 1314 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑁 ∈ 𝑇) | 
| 7 |  | simp22l 1293 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐺 ∈ 𝑇) | 
| 8 |  | simp23l 1295 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑋 ∈ 𝑇) | 
| 9 | 6, 7, 8 | 3jca 1129 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇)) | 
| 10 |  | simp33 1212 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 11 |  | simp13 1206 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐹) = (𝑅‘𝑁)) | 
| 12 |  | simp32l 1299 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵)) | 
| 13 |  | simp32r 1300 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐶 ≠ ( I ↾ 𝐵)) | 
| 14 |  | simp22r 1294 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐺 ≠ ( I ↾ 𝐵)) | 
| 15 | 12, 13, 14 | 3jca 1129 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵))) | 
| 16 |  | simp23r 1296 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑋 ≠ ( I ↾ 𝐵)) | 
| 17 |  | simp31 1210 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶))) | 
| 18 |  | cdlemk2.b | . . 3
⊢ 𝐵 = (Base‘𝐾) | 
| 19 |  | cdlemk2.l | . . 3
⊢  ≤ =
(le‘𝐾) | 
| 20 |  | cdlemk2.j | . . 3
⊢  ∨ =
(join‘𝐾) | 
| 21 |  | cdlemk2.m | . . 3
⊢  ∧ =
(meet‘𝐾) | 
| 22 |  | cdlemk2.a | . . 3
⊢ 𝐴 = (Atoms‘𝐾) | 
| 23 |  | cdlemk2.h | . . 3
⊢ 𝐻 = (LHyp‘𝐾) | 
| 24 |  | cdlemk2.t | . . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 25 |  | cdlemk2.r | . . 3
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 26 |  | cdlemk2.s | . . 3
⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | 
| 27 |  | cdlemk2.q | . . 3
⊢ 𝑄 = (𝑆‘𝐶) | 
| 28 |  | cdlemk2.v | . . 3
⊢ 𝑉 = (𝑑 ∈ 𝑇 ↦ (℩𝑘 ∈ 𝑇 (𝑘‘𝑃) = ((𝑃 ∨ (𝑅‘𝑑)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑑 ∘ ◡𝐶)))))) | 
| 29 |  | cdlemk2.z | . . 3
⊢ 𝑍 = (((𝐺‘𝑃) ∨ (𝑋‘𝑃)) ∧ ((𝑅‘(𝐺 ∘ ◡𝐶)) ∨ (𝑅‘(𝑋 ∘ ◡𝐶)))) | 
| 30 | 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | cdlemk7u 40872 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)))) → ((𝑉‘𝐺)‘𝑃) ≤ (((𝑉‘𝑋)‘𝑃) ∨ 𝑍)) | 
| 31 | 3, 4, 5, 9, 10, 11, 15, 16, 17, 30 | syl333anc 1404 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑉‘𝐺)‘𝑃) ≤ (((𝑉‘𝑋)‘𝑃) ∨ 𝑍)) |