Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk20-2N Structured version   Visualization version   GIF version

Theorem cdlemk20-2N 40871
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 22, p. 119 for the i=2, j=1 case. Note typo on line 22: f should be fi. Our 𝐷, 𝐶, 𝑂, 𝑄, 𝑈, 𝑉 represent their f1, f2, k1, k2, sigma1, sigma2. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b 𝐵 = (Base‘𝐾)
cdlemk2.l = (le‘𝐾)
cdlemk2.j = (join‘𝐾)
cdlemk2.m = (meet‘𝐾)
cdlemk2.a 𝐴 = (Atoms‘𝐾)
cdlemk2.h 𝐻 = (LHyp‘𝐾)
cdlemk2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk2.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk2.q 𝑄 = (𝑆𝐶)
cdlemk2.v 𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))
cdlemk2a.o 𝑂 = (𝑆𝐷)
Assertion
Ref Expression
cdlemk20-2N (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐷)‘𝑃) = (𝑂𝑃))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐶,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑑   ,𝑑   𝐶,𝑑,𝑘   𝑄,𝑑   𝑃,𝑑   𝑅,𝑑   𝑇,𝑑   𝑊,𝑑   ,𝑘   ,𝑘   ,𝑘   𝐴,𝑘   𝐶,𝑘   𝑘,𝐹   𝑘,𝐻   𝑘,𝐾   𝑘,𝑁   𝑄,𝑘   𝑃,𝑘   𝑅,𝑘   𝑇,𝑘   𝑘,𝑊   𝐹,𝑑   𝑖,𝑘,𝑓,𝐷,𝑑
Allowed substitution hints:   𝐴(𝑓,𝑑)   𝐵(𝑓,𝑖,𝑘,𝑑)   𝑄(𝑓,𝑖)   𝑆(𝑓,𝑖,𝑘,𝑑)   𝐻(𝑓,𝑑)   𝐾(𝑓,𝑑)   (𝑓,𝑑)   𝑁(𝑑)   𝑂(𝑓,𝑖,𝑘,𝑑)   𝑉(𝑓,𝑖,𝑘,𝑑)

Proof of Theorem cdlemk20-2N
StepHypRef Expression
1 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐾 ∈ HL)
2 simp12 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑊𝐻)
31, 2jca 511 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp211 1312 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
5 simp212 1313 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐶𝑇)
6 simp213 1314 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑁𝑇)
7 simp22l 1293 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐷𝑇)
86, 7jca 511 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑁𝑇𝐷𝑇))
9 simp33 1212 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
10 simp13 1206 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐹) = (𝑅𝑁))
11 simp32l 1299 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
12 simp32r 1300 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐶 ≠ ( I ↾ 𝐵))
13 simp22r 1294 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐷 ≠ ( I ↾ 𝐵))
1411, 12, 133jca 1128 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)))
15 simp31 1210 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)))
16 cdlemk2.b . . 3 𝐵 = (Base‘𝐾)
17 cdlemk2.l . . 3 = (le‘𝐾)
18 cdlemk2.j . . 3 = (join‘𝐾)
19 cdlemk2.m . . 3 = (meet‘𝐾)
20 cdlemk2.a . . 3 𝐴 = (Atoms‘𝐾)
21 cdlemk2.h . . 3 𝐻 = (LHyp‘𝐾)
22 cdlemk2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
23 cdlemk2.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
24 cdlemk2.s . . 3 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
25 cdlemk2.q . . 3 𝑄 = (𝑆𝐶)
26 cdlemk2.v . . 3 𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))
27 cdlemk2a.o . . 3 𝑂 = (𝑆𝐷)
2816, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27cdlemk20 40853 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐶𝑇) ∧ ((𝑁𝑇𝐷𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)))) → ((𝑉𝐷)‘𝑃) = (𝑂𝑃))
293, 4, 5, 8, 9, 10, 14, 15, 28syl332anc 1403 1 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐷)‘𝑃) = (𝑂𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cmpt 5176   I cid 5517  ccnv 5622  cres 5625  ccom 5627  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  meetcmee 18236  Atomscatm 39241  HLchlt 39328  LHypclh 39963  LTrncltrn 40080  trLctrl 40137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-undef 8213  df-map 8762  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator