![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp133 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp133 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp33 1211 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: tsmsxp 24184 ax5seglem3 28964 exatleN 39361 3atlem1 39440 3atlem2 39441 3atlem6 39445 4atlem11b 39565 4atlem12b 39568 lplncvrlvol2 39572 dalemuea 39588 dath2 39694 4atexlemex6 40031 cdleme22f2 40304 cdleme22g 40305 cdlemg7aN 40582 cdlemg31c 40656 cdlemg36 40671 cdlemj1 40778 cdlemj2 40779 cdlemk23-3 40859 cdlemk26b-3 40862 |
Copyright terms: Public domain | W3C validator |