| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp133 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp133 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp33 1212 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: tsmsxp 24048 ax5seglem3 28864 exatleN 39393 3atlem1 39472 3atlem2 39473 3atlem6 39477 4atlem11b 39597 4atlem12b 39600 lplncvrlvol2 39604 dalemuea 39620 dath2 39726 4atexlemex6 40063 cdleme22f2 40336 cdleme22g 40337 cdlemg7aN 40614 cdlemg31c 40688 cdlemg36 40703 cdlemj1 40810 cdlemj2 40811 cdlemk23-3 40891 cdlemk26b-3 40894 |
| Copyright terms: Public domain | W3C validator |