MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Structured version   Visualization version   GIF version

Theorem simp133 1308
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp133
StepHypRef Expression
1 simp33 1209 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant1 1131 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  tsmsxp  23879  ax5seglem3  28456  exatleN  38578  3atlem1  38657  3atlem2  38658  3atlem6  38662  4atlem11b  38782  4atlem12b  38785  lplncvrlvol2  38789  dalemuea  38805  dath2  38911  4atexlemex6  39248  cdleme22f2  39521  cdleme22g  39522  cdlemg7aN  39799  cdlemg31c  39873  cdlemg36  39888  cdlemj1  39995  cdlemj2  39996  cdlemk23-3  40076  cdlemk26b-3  40079
  Copyright terms: Public domain W3C validator