MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Structured version   Visualization version   GIF version

Theorem simp133 1311
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp133
StepHypRef Expression
1 simp33 1212 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant1 1133 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  tsmsxp  24042  ax5seglem3  28858  exatleN  39398  3atlem1  39477  3atlem2  39478  3atlem6  39482  4atlem11b  39602  4atlem12b  39605  lplncvrlvol2  39609  dalemuea  39625  dath2  39731  4atexlemex6  40068  cdleme22f2  40341  cdleme22g  40342  cdlemg7aN  40619  cdlemg31c  40693  cdlemg36  40708  cdlemj1  40815  cdlemj2  40816  cdlemk23-3  40896  cdlemk26b-3  40899
  Copyright terms: Public domain W3C validator