![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp133 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp133 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp33 1212 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
2 | 1 | 3ad2ant1 1134 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: tsmsxp 24188 ax5seglem3 28972 exatleN 39401 3atlem1 39480 3atlem2 39481 3atlem6 39485 4atlem11b 39605 4atlem12b 39608 lplncvrlvol2 39612 dalemuea 39628 dath2 39734 4atexlemex6 40071 cdleme22f2 40344 cdleme22g 40345 cdlemg7aN 40622 cdlemg31c 40696 cdlemg36 40711 cdlemj1 40818 cdlemj2 40819 cdlemk23-3 40899 cdlemk26b-3 40902 |
Copyright terms: Public domain | W3C validator |