Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp133 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp133 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp33 1209 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: tsmsxp 23214 ax5seglem3 27202 exatleN 37345 3atlem1 37424 3atlem2 37425 3atlem6 37429 4atlem11b 37549 4atlem12b 37552 lplncvrlvol2 37556 dalemuea 37572 dath2 37678 4atexlemex6 38015 cdleme22f2 38288 cdleme22g 38289 cdlemg7aN 38566 cdlemg31c 38640 cdlemg36 38655 cdlemj1 38762 cdlemj2 38763 cdlemk23-3 38843 cdlemk26b-3 38846 |
Copyright terms: Public domain | W3C validator |