| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp133 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp133 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp33 1212 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: tsmsxp 24090 ax5seglem3 28930 exatleN 39576 3atlem1 39655 3atlem2 39656 3atlem6 39660 4atlem11b 39780 4atlem12b 39783 lplncvrlvol2 39787 dalemuea 39803 dath2 39909 4atexlemex6 40246 cdleme22f2 40519 cdleme22g 40520 cdlemg7aN 40797 cdlemg31c 40871 cdlemg36 40886 cdlemj1 40993 cdlemj2 40994 cdlemk23-3 41074 cdlemk26b-3 41077 |
| Copyright terms: Public domain | W3C validator |