MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Structured version   Visualization version   GIF version

Theorem simp133 1310
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp133
StepHypRef Expression
1 simp33 1211 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant1 1133 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  tsmsxp  24109  ax5seglem3  28876  exatleN  39365  3atlem1  39444  3atlem2  39445  3atlem6  39449  4atlem11b  39569  4atlem12b  39572  lplncvrlvol2  39576  dalemuea  39592  dath2  39698  4atexlemex6  40035  cdleme22f2  40308  cdleme22g  40309  cdlemg7aN  40586  cdlemg31c  40660  cdlemg36  40675  cdlemj1  40782  cdlemj2  40783  cdlemk23-3  40863  cdlemk26b-3  40866
  Copyright terms: Public domain W3C validator