MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Structured version   Visualization version   GIF version

Theorem simp133 1311
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp133
StepHypRef Expression
1 simp33 1212 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant1 1133 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  tsmsxp  24048  ax5seglem3  28864  exatleN  39393  3atlem1  39472  3atlem2  39473  3atlem6  39477  4atlem11b  39597  4atlem12b  39600  lplncvrlvol2  39604  dalemuea  39620  dath2  39726  4atexlemex6  40063  cdleme22f2  40336  cdleme22g  40337  cdlemg7aN  40614  cdlemg31c  40688  cdlemg36  40703  cdlemj1  40810  cdlemj2  40811  cdlemk23-3  40891  cdlemk26b-3  40894
  Copyright terms: Public domain W3C validator