| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp133 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp133 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp33 1212 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: tsmsxp 24018 ax5seglem3 28834 exatleN 39371 3atlem1 39450 3atlem2 39451 3atlem6 39455 4atlem11b 39575 4atlem12b 39578 lplncvrlvol2 39582 dalemuea 39598 dath2 39704 4atexlemex6 40041 cdleme22f2 40314 cdleme22g 40315 cdlemg7aN 40592 cdlemg31c 40666 cdlemg36 40681 cdlemj1 40788 cdlemj2 40789 cdlemk23-3 40869 cdlemk26b-3 40872 |
| Copyright terms: Public domain | W3C validator |