![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp133 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp133 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp33 1208 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
2 | 1 | 3ad2ant1 1130 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: tsmsxp 24079 ax5seglem3 28762 exatleN 38909 3atlem1 38988 3atlem2 38989 3atlem6 38993 4atlem11b 39113 4atlem12b 39116 lplncvrlvol2 39120 dalemuea 39136 dath2 39242 4atexlemex6 39579 cdleme22f2 39852 cdleme22g 39853 cdlemg7aN 40130 cdlemg31c 40204 cdlemg36 40219 cdlemj1 40326 cdlemj2 40327 cdlemk23-3 40407 cdlemk26b-3 40410 |
Copyright terms: Public domain | W3C validator |