MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Structured version   Visualization version   GIF version

Theorem simp133 1311
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp133
StepHypRef Expression
1 simp33 1212 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant1 1133 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  tsmsxp  24059  ax5seglem3  28895  exatleN  39403  3atlem1  39482  3atlem2  39483  3atlem6  39487  4atlem11b  39607  4atlem12b  39610  lplncvrlvol2  39614  dalemuea  39630  dath2  39736  4atexlemex6  40073  cdleme22f2  40346  cdleme22g  40347  cdlemg7aN  40624  cdlemg31c  40698  cdlemg36  40713  cdlemj1  40820  cdlemj2  40821  cdlemk23-3  40901  cdlemk26b-3  40904
  Copyright terms: Public domain W3C validator