MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Structured version   Visualization version   GIF version

Theorem simp133 1310
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp133
StepHypRef Expression
1 simp33 1211 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant1 1133 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  tsmsxp  24184  ax5seglem3  28964  exatleN  39361  3atlem1  39440  3atlem2  39441  3atlem6  39445  4atlem11b  39565  4atlem12b  39568  lplncvrlvol2  39572  dalemuea  39588  dath2  39694  4atexlemex6  40031  cdleme22f2  40304  cdleme22g  40305  cdlemg7aN  40582  cdlemg31c  40656  cdlemg36  40671  cdlemj1  40778  cdlemj2  40779  cdlemk23-3  40859  cdlemk26b-3  40862
  Copyright terms: Public domain W3C validator