![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp213 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp213 | ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1268 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant2 1170 | 1 ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1115 |
This theorem is referenced by: cdleme27a 36443 cdlemk5u 36937 cdlemk6u 36938 cdlemk7u 36946 cdlemk11u 36947 cdlemk12u 36948 cdlemk7u-2N 36964 cdlemk11u-2N 36965 cdlemk12u-2N 36966 cdlemk20-2N 36968 cdlemk22 36969 cdlemk22-3 36977 cdlemk33N 36985 cdlemk53b 37032 cdlemk53 37033 cdlemk55a 37035 cdlemkyyN 37038 cdlemk43N 37039 |
Copyright terms: Public domain | W3C validator |