MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp213 Structured version   Visualization version   GIF version

Theorem simp213 1313
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp213 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜒)

Proof of Theorem simp213
StepHypRef Expression
1 simp13 1205 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
213ad2ant2 1134 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  cdleme27a  40324  cdlemk5u  40818  cdlemk6u  40819  cdlemk7u  40827  cdlemk11u  40828  cdlemk12u  40829  cdlemk7u-2N  40845  cdlemk11u-2N  40846  cdlemk12u-2N  40847  cdlemk20-2N  40849  cdlemk22  40850  cdlemk22-3  40858  cdlemk33N  40866  cdlemk53b  40913  cdlemk53  40914  cdlemk55a  40916  cdlemkyyN  40919  cdlemk43N  40920
  Copyright terms: Public domain W3C validator