MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp213 Structured version   Visualization version   GIF version

Theorem simp213 1311
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp213 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜒)

Proof of Theorem simp213
StepHypRef Expression
1 simp13 1203 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
213ad2ant2 1132 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  cdleme27a  38308  cdlemk5u  38802  cdlemk6u  38803  cdlemk7u  38811  cdlemk11u  38812  cdlemk12u  38813  cdlemk7u-2N  38829  cdlemk11u-2N  38830  cdlemk12u-2N  38831  cdlemk20-2N  38833  cdlemk22  38834  cdlemk22-3  38842  cdlemk33N  38850  cdlemk53b  38897  cdlemk53  38898  cdlemk55a  38900  cdlemkyyN  38903  cdlemk43N  38904
  Copyright terms: Public domain W3C validator