Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp213 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp213 | ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1207 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant2 1136 | 1 ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: cdleme27a 38118 cdlemk5u 38612 cdlemk6u 38613 cdlemk7u 38621 cdlemk11u 38622 cdlemk12u 38623 cdlemk7u-2N 38639 cdlemk11u-2N 38640 cdlemk12u-2N 38641 cdlemk20-2N 38643 cdlemk22 38644 cdlemk22-3 38652 cdlemk33N 38660 cdlemk53b 38707 cdlemk53 38708 cdlemk55a 38710 cdlemkyyN 38713 cdlemk43N 38714 |
Copyright terms: Public domain | W3C validator |