| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp213 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp213 | ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp13 1206 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜒) | |
| 2 | 1 | 3ad2ant2 1135 | 1 ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: cdleme27a 40369 cdlemk5u 40863 cdlemk6u 40864 cdlemk7u 40872 cdlemk11u 40873 cdlemk12u 40874 cdlemk7u-2N 40890 cdlemk11u-2N 40891 cdlemk12u-2N 40892 cdlemk20-2N 40894 cdlemk22 40895 cdlemk22-3 40903 cdlemk33N 40911 cdlemk53b 40958 cdlemk53 40959 cdlemk55a 40961 cdlemkyyN 40964 cdlemk43N 40965 |
| Copyright terms: Public domain | W3C validator |