MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp213 Structured version   Visualization version   GIF version

Theorem simp213 1418
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp213 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜒)

Proof of Theorem simp213
StepHypRef Expression
1 simp13 1268 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
213ad2ant2 1170 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-3an 1115
This theorem is referenced by:  cdleme27a  36443  cdlemk5u  36937  cdlemk6u  36938  cdlemk7u  36946  cdlemk11u  36947  cdlemk12u  36948  cdlemk7u-2N  36964  cdlemk11u-2N  36965  cdlemk12u-2N  36966  cdlemk20-2N  36968  cdlemk22  36969  cdlemk22-3  36977  cdlemk33N  36985  cdlemk53b  37032  cdlemk53  37033  cdlemk55a  37035  cdlemkyyN  37038  cdlemk43N  37039
  Copyright terms: Public domain W3C validator