MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp213 Structured version   Visualization version   GIF version

Theorem simp213 1314
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp213 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜒)

Proof of Theorem simp213
StepHypRef Expression
1 simp13 1206 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
213ad2ant2 1134 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  cdleme27a  40354  cdlemk5u  40848  cdlemk6u  40849  cdlemk7u  40857  cdlemk11u  40858  cdlemk12u  40859  cdlemk7u-2N  40875  cdlemk11u-2N  40876  cdlemk12u-2N  40877  cdlemk20-2N  40879  cdlemk22  40880  cdlemk22-3  40888  cdlemk33N  40896  cdlemk53b  40943  cdlemk53  40944  cdlemk55a  40946  cdlemkyyN  40949  cdlemk43N  40950
  Copyright terms: Public domain W3C validator