Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-iotauni Structured version   Visualization version   GIF version

Theorem sn-iotauni 40180
Description: Version of iotauni 6403 using df-iota 6386 instead of dfiota2 6387. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
sn-iotauni (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sn-iotauni
StepHypRef Expression
1 iotavallem 40179 . . 3 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
2 unieq 4852 . . . 4 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} = {𝑦})
3 vex 3435 . . . . 5 𝑦 ∈ V
43unisn 4863 . . . 4 {𝑦} = 𝑦
52, 4eqtr2di 2795 . . 3 ({𝑥𝜑} = {𝑦} → 𝑦 = {𝑥𝜑})
61, 5eqtrd 2778 . 2 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
76exlimiv 1933 1 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wex 1782  {cab 2715  {csn 4563   cuni 4841  cio 6384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3433  df-un 3893  df-in 3895  df-ss 3905  df-sn 4564  df-pr 4566  df-uni 4842  df-iota 6386
This theorem is referenced by:  sn-iotassuni  40183
  Copyright terms: Public domain W3C validator