Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-iotauni Structured version   Visualization version   GIF version

Theorem sn-iotauni 40092
Description: Version of iotauni 6390 using df-iota 6373 instead of dfiota2 6374. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
sn-iotauni (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sn-iotauni
StepHypRef Expression
1 sn-iotaval 40091 . . 3 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
2 unieq 4847 . . . 4 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} = {𝑦})
3 vex 3427 . . . . 5 𝑦 ∈ V
43unisn 4858 . . . 4 {𝑦} = 𝑦
52, 4eqtr2di 2797 . . 3 ({𝑥𝜑} = {𝑦} → 𝑦 = {𝑥𝜑})
61, 5eqtrd 2779 . 2 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
76exlimiv 1938 1 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wex 1787  {cab 2716  {csn 4558   cuni 4836  cio 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-v 3425  df-un 3889  df-in 3891  df-ss 3901  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6373
This theorem is referenced by:  sn-iotassuni  40094
  Copyright terms: Public domain W3C validator