Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-iotauni | Structured version Visualization version GIF version |
Description: Version of iotauni 6390 using df-iota 6373 instead of dfiota2 6374. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
sn-iotauni | ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-iotaval 40091 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
2 | unieq 4847 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) | |
3 | vex 3427 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 3 | unisn 4858 | . . . 4 ⊢ ∪ {𝑦} = 𝑦 |
5 | 2, 4 | eqtr2di 2797 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → 𝑦 = ∪ {𝑥 ∣ 𝜑}) |
6 | 1, 5 | eqtrd 2779 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
7 | 6 | exlimiv 1938 | 1 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∃wex 1787 {cab 2716 {csn 4558 ∪ cuni 4836 ℩cio 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-un 3889 df-in 3891 df-ss 3901 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6373 |
This theorem is referenced by: sn-iotassuni 40094 |
Copyright terms: Public domain | W3C validator |