| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisn | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisn | ⊢ ∪ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unisng 4879 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ {𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 df-sn 4580 df-pr 4582 df-uni 4862 |
| This theorem is referenced by: unisnv 4881 unidif0 5302 op1sta 6178 op2nda 6181 opswap 6182 fvssunirnOLD 6858 funfv 6914 dffv2 6922 nlim1 8414 tc2 9657 cflim2 10176 fin1a2lem12 10324 acsmapd 18478 ghmqusnsglem1 19177 ghmquskerlem1 19180 pmtrprfval 19384 lspuni0 20931 lss0v 20938 zrhval2 21433 indistopon 22904 refun0 23418 qtopeu 23619 hmphindis 23700 filconn 23786 ufildr 23834 cnextfres1 23971 bday1s 27763 old1 27807 madeoldsuc 27817 zs12bday 28379 dimval 33572 dimvalfi 33573 locfinref 33807 pstmfval 33862 esumval 34012 esumpfinval 34041 esumpfinvalf 34042 prsiga 34097 carsggect 34285 indispconn 35206 onsucsuccmpi 36416 bj-nuliotaALT 37031 heiborlem3 37792 isomenndlem 46512 uniimaelsetpreimafv 47381 |
| Copyright terms: Public domain | W3C validator |