| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisn | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisn | ⊢ ∪ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unisng 4876 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ {𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-sn 4576 df-pr 4578 df-uni 4859 |
| This theorem is referenced by: unisnv 4878 unidif0 5300 op1sta 6177 op2nda 6180 opswap 6181 funfv 6915 dffv2 6923 nlim1 8410 tc2 9637 cflim2 10161 fin1a2lem12 10309 acsmapd 18462 ghmqusnsglem1 19194 ghmquskerlem1 19197 pmtrprfval 19401 lspuni0 20945 lss0v 20952 zrhval2 21447 indistopon 22917 refun0 23431 qtopeu 23632 hmphindis 23713 filconn 23799 ufildr 23847 cnextfres1 23984 bday1s 27776 old1 27821 madeoldsuc 27831 zs12bday 28395 dimval 33634 dimvalfi 33635 locfinref 33875 pstmfval 33930 esumval 34080 esumpfinval 34109 esumpfinvalf 34110 prsiga 34165 carsggect 34352 fineqvnttrclse 35165 indispconn 35299 onsucsuccmpi 36508 bj-nuliotaALT 37123 heiborlem3 37873 isomenndlem 46652 uniimaelsetpreimafv 47520 |
| Copyright terms: Public domain | W3C validator |