![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisn | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisn | ⊢ ∪ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unisng 4930 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ {𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-uni 4913 |
This theorem is referenced by: unisnv 4932 unidif0 5366 op1sta 6247 op2nda 6250 opswap 6251 fvssunirnOLD 6941 funfv 6996 dffv2 7004 nlim1 8526 tc2 9780 cflim2 10301 fin1a2lem12 10449 acsmapd 18612 ghmqusnsglem1 19311 ghmquskerlem1 19314 pmtrprfval 19520 lspuni0 21026 lss0v 21033 zrhval2 21537 indistopon 23024 refun0 23539 qtopeu 23740 hmphindis 23821 filconn 23907 ufildr 23955 cnextfres1 24092 bday1s 27891 old1 27929 madeoldsuc 27938 zs12bday 28439 dimval 33628 dimvalfi 33629 locfinref 33802 pstmfval 33857 esumval 34027 esumpfinval 34056 esumpfinvalf 34057 prsiga 34112 carsggect 34300 indispconn 35219 onsucsuccmpi 36426 bj-nuliotaALT 37041 heiborlem3 37800 isomenndlem 46486 uniimaelsetpreimafv 47321 |
Copyright terms: Public domain | W3C validator |