| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisn | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisn | ⊢ ∪ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unisng 4901 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ {𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-sn 4602 df-pr 4604 df-uni 4884 |
| This theorem is referenced by: unisnv 4903 unidif0 5330 op1sta 6214 op2nda 6217 opswap 6218 fvssunirnOLD 6910 funfv 6966 dffv2 6974 nlim1 8501 tc2 9756 cflim2 10277 fin1a2lem12 10425 acsmapd 18564 ghmqusnsglem1 19263 ghmquskerlem1 19266 pmtrprfval 19468 lspuni0 20967 lss0v 20974 zrhval2 21469 indistopon 22939 refun0 23453 qtopeu 23654 hmphindis 23735 filconn 23821 ufildr 23869 cnextfres1 24006 bday1s 27795 old1 27839 madeoldsuc 27848 zs12bday 28395 dimval 33640 dimvalfi 33641 locfinref 33872 pstmfval 33927 esumval 34077 esumpfinval 34106 esumpfinvalf 34107 prsiga 34162 carsggect 34350 indispconn 35256 onsucsuccmpi 36461 bj-nuliotaALT 37076 heiborlem3 37837 isomenndlem 46559 uniimaelsetpreimafv 47410 |
| Copyright terms: Public domain | W3C validator |