| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisn | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisn | ⊢ ∪ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unisng 4889 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ {𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 df-uni 4872 |
| This theorem is referenced by: unisnv 4891 unidif0 5315 op1sta 6198 op2nda 6201 opswap 6202 fvssunirnOLD 6892 funfv 6948 dffv2 6956 nlim1 8453 tc2 9695 cflim2 10216 fin1a2lem12 10364 acsmapd 18513 ghmqusnsglem1 19212 ghmquskerlem1 19215 pmtrprfval 19417 lspuni0 20916 lss0v 20923 zrhval2 21418 indistopon 22888 refun0 23402 qtopeu 23603 hmphindis 23684 filconn 23770 ufildr 23818 cnextfres1 23955 bday1s 27743 old1 27787 madeoldsuc 27796 zs12bday 28343 dimval 33596 dimvalfi 33597 locfinref 33831 pstmfval 33886 esumval 34036 esumpfinval 34065 esumpfinvalf 34066 prsiga 34121 carsggect 34309 indispconn 35221 onsucsuccmpi 36431 bj-nuliotaALT 37046 heiborlem3 37807 isomenndlem 46528 uniimaelsetpreimafv 47397 |
| Copyright terms: Public domain | W3C validator |