| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisn | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisn | ⊢ ∪ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unisng 4877 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ {𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-sn 4577 df-pr 4579 df-uni 4860 |
| This theorem is referenced by: unisnv 4879 unidif0 5298 op1sta 6172 op2nda 6175 opswap 6176 funfv 6909 dffv2 6917 nlim1 8404 tc2 9632 cflim2 10151 fin1a2lem12 10299 acsmapd 18457 ghmqusnsglem1 19190 ghmquskerlem1 19193 pmtrprfval 19397 lspuni0 20941 lss0v 20948 zrhval2 21443 indistopon 22914 refun0 23428 qtopeu 23629 hmphindis 23710 filconn 23796 ufildr 23844 cnextfres1 23981 bday1s 27773 old1 27818 madeoldsuc 27828 zs12bday 28392 dimval 33608 dimvalfi 33609 locfinref 33849 pstmfval 33904 esumval 34054 esumpfinval 34083 esumpfinvalf 34084 prsiga 34139 carsggect 34326 fineqvnttrclse 35132 indispconn 35266 onsucsuccmpi 36476 bj-nuliotaALT 37091 heiborlem3 37852 isomenndlem 46567 uniimaelsetpreimafv 47426 |
| Copyright terms: Public domain | W3C validator |