| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisn | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisn | ⊢ ∪ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unisng 4892 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ {𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 df-uni 4875 |
| This theorem is referenced by: unisnv 4894 unidif0 5318 op1sta 6201 op2nda 6204 opswap 6205 fvssunirnOLD 6895 funfv 6951 dffv2 6959 nlim1 8456 tc2 9702 cflim2 10223 fin1a2lem12 10371 acsmapd 18520 ghmqusnsglem1 19219 ghmquskerlem1 19222 pmtrprfval 19424 lspuni0 20923 lss0v 20930 zrhval2 21425 indistopon 22895 refun0 23409 qtopeu 23610 hmphindis 23691 filconn 23777 ufildr 23825 cnextfres1 23962 bday1s 27750 old1 27794 madeoldsuc 27803 zs12bday 28350 dimval 33603 dimvalfi 33604 locfinref 33838 pstmfval 33893 esumval 34043 esumpfinval 34072 esumpfinvalf 34073 prsiga 34128 carsggect 34316 indispconn 35228 onsucsuccmpi 36438 bj-nuliotaALT 37053 heiborlem3 37814 isomenndlem 46535 uniimaelsetpreimafv 47401 |
| Copyright terms: Public domain | W3C validator |