Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unisn | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisn | ⊢ ∪ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unisng 4860 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ {𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: uniintsn 4918 unidif0 5282 op1sta 6128 op2nda 6131 opswap 6132 unisuc 6342 uniabio 6406 fvssunirn 6803 opabiotafun 6849 funfv 6855 dffv2 6863 onuninsuci 7687 nlim1 8319 en1b 8813 en1bOLD 8814 tc2 9500 cflim2 10019 fin1a2lem10 10165 fin1a2lem12 10167 incexclem 15548 acsmapd 18272 pmtrprfval 19095 sylow2a 19224 lspuni0 20272 lss0v 20278 zrhval2 20710 indistopon 22151 refun0 22666 1stckgenlem 22704 qtopeu 22867 hmphindis 22948 filconn 23034 ufildr 23082 alexsubALTlem3 23200 ptcmplem2 23204 cnextfres1 23219 icccmplem1 23985 unidifsnel 30883 unidifsnne 30884 disjabrex 30921 disjabrexf 30922 dimval 31686 dimvalfi 31687 locfinref 31791 pstmfval 31846 esumval 32014 esumpfinval 32043 esumpfinvalf 32044 prsiga 32099 fiunelcarsg 32283 carsgclctunlem1 32284 carsggect 32285 indispconn 33196 bday1s 34025 madeoldsuc 34067 fobigcup 34202 onsucsuccmpi 34632 bj-nuliotaALT 35229 mbfresfi 35823 heiborlem3 35971 sn-iotauni 40193 isomenndlem 44068 uniimaelsetpreimafv 44848 |
Copyright terms: Public domain | W3C validator |