Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unisn | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisn | ⊢ ∪ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unisng 4857 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ {𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 |
This theorem is referenced by: uniintsn 4915 unidif0 5277 op1sta 6117 op2nda 6120 opswap 6121 unisuc 6327 uniabio 6391 fvssunirn 6785 opabiotafun 6831 funfv 6837 dffv2 6845 onuninsuci 7662 en1b 8767 en1bOLD 8768 tc2 9431 cflim2 9950 fin1a2lem10 10096 fin1a2lem12 10098 incexclem 15476 acsmapd 18187 pmtrprfval 19010 sylow2a 19139 lspuni0 20187 lss0v 20193 zrhval2 20622 indistopon 22059 refun0 22574 1stckgenlem 22612 qtopeu 22775 hmphindis 22856 filconn 22942 ufildr 22990 alexsubALTlem3 23108 ptcmplem2 23112 cnextfres1 23127 icccmplem1 23891 unidifsnel 30784 unidifsnne 30785 disjabrex 30822 disjabrexf 30823 dimval 31588 dimvalfi 31589 locfinref 31693 pstmfval 31748 esumval 31914 esumpfinval 31943 esumpfinvalf 31944 prsiga 31999 fiunelcarsg 32183 carsgclctunlem1 32184 carsggect 32185 indispconn 33096 bday1s 33952 madeoldsuc 33994 fobigcup 34129 onsucsuccmpi 34559 bj-nuliotaALT 35156 mbfresfi 35750 heiborlem3 35898 sn-iotauni 40120 isomenndlem 43958 uniimaelsetpreimafv 44736 |
Copyright terms: Public domain | W3C validator |