Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-iotaval Structured version   Visualization version   GIF version

Theorem sn-iotaval 40192
Description: iotaval 6406 without ax-10 2141, ax-11 2158, ax-12 2175. (Contributed by SN, 23-Nov-2024.)
Assertion
Ref Expression
sn-iotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sn-iotaval
StepHypRef Expression
1 abbi1sn 40188 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
2 iotavallem 40189 . 2 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
31, 2syl 17 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540   = wceq 1542  {cab 2717  {csn 4567  cio 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-un 3897  df-in 3899  df-ss 3909  df-sn 4568  df-pr 4570  df-uni 4846  df-iota 6390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator