Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-iotaval | Structured version Visualization version GIF version |
Description: Version of iotaval 6389 using df-iota 6373 instead of dfiota2 6374. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
sn-iotaval | ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iota 6373 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} | |
2 | eqeq1 2743 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} = {𝑤} ↔ {𝑦} = {𝑤})) | |
3 | sneqbg 4771 | . . . . . . 7 ⊢ (𝑦 ∈ V → ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤)) | |
4 | 3 | elv 3429 | . . . . . 6 ⊢ ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤) |
5 | equcom 2026 | . . . . . 6 ⊢ (𝑦 = 𝑤 ↔ 𝑤 = 𝑦) | |
6 | 4, 5 | bitri 278 | . . . . 5 ⊢ ({𝑦} = {𝑤} ↔ 𝑤 = 𝑦) |
7 | 2, 6 | bitrdi 290 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦)) |
8 | 7 | alrimiv 1935 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∀𝑤({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦)) |
9 | uniabio 6388 | . . 3 ⊢ (∀𝑤({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦) → ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = 𝑦) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = 𝑦) |
11 | 1, 10 | eqtrid 2791 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1541 = wceq 1543 {cab 2716 Vcvv 3423 {csn 4558 ∪ cuni 4836 ℩cio 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-un 3889 df-in 3891 df-ss 3901 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6373 |
This theorem is referenced by: sn-iotauni 40092 sn-iotaex 40095 |
Copyright terms: Public domain | W3C validator |