Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-iotaval Structured version   Visualization version   GIF version

Theorem sn-iotaval 40091
Description: Version of iotaval 6389 using df-iota 6373 instead of dfiota2 6374. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
sn-iotaval ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sn-iotaval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-iota 6373 . 2 (℩𝑥𝜑) = {𝑤 ∣ {𝑥𝜑} = {𝑤}}
2 eqeq1 2743 . . . . 5 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} = {𝑤} ↔ {𝑦} = {𝑤}))
3 sneqbg 4771 . . . . . . 7 (𝑦 ∈ V → ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤))
43elv 3429 . . . . . 6 ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤)
5 equcom 2026 . . . . . 6 (𝑦 = 𝑤𝑤 = 𝑦)
64, 5bitri 278 . . . . 5 ({𝑦} = {𝑤} ↔ 𝑤 = 𝑦)
72, 6bitrdi 290 . . . 4 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} = {𝑤} ↔ 𝑤 = 𝑦))
87alrimiv 1935 . . 3 ({𝑥𝜑} = {𝑦} → ∀𝑤({𝑥𝜑} = {𝑤} ↔ 𝑤 = 𝑦))
9 uniabio 6388 . . 3 (∀𝑤({𝑥𝜑} = {𝑤} ↔ 𝑤 = 𝑦) → {𝑤 ∣ {𝑥𝜑} = {𝑤}} = 𝑦)
108, 9syl 17 . 2 ({𝑥𝜑} = {𝑦} → {𝑤 ∣ {𝑥𝜑} = {𝑤}} = 𝑦)
111, 10eqtrid 2791 1 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1541   = wceq 1543  {cab 2716  Vcvv 3423  {csn 4558   cuni 4836  cio 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-v 3425  df-un 3889  df-in 3891  df-ss 3901  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6373
This theorem is referenced by:  sn-iotauni  40092  sn-iotaex  40095
  Copyright terms: Public domain W3C validator