Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-iotassuni Structured version   Visualization version   GIF version

Theorem sn-iotassuni 40094
Description: iotassuni 6394 without ax-10 2143, ax-11 2160, ax-12 2177. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
sn-iotassuni (℩𝑥𝜑) ⊆ {𝑥𝜑}

Proof of Theorem sn-iotassuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sn-iotauni 40092 . . 3 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
2 eqimss 3974 . . 3 ((℩𝑥𝜑) = {𝑥𝜑} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
31, 2syl 17 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
4 sn-iotanul 40093 . . 3 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
5 0ss 4328 . . 3 ∅ ⊆ {𝑥𝜑}
64, 5eqsstrdi 3972 . 2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
73, 6pm2.61i 185 1 (℩𝑥𝜑) ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1543  wex 1787  {cab 2716  wss 3884  c0 4254  {csn 4558   cuni 4836  cio 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator