Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-iotanul Structured version   Visualization version   GIF version

Theorem sn-iotanul 40093
Description: Version of iotanul 6393 using df-iota 6373 instead of dfiota2 6374. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
sn-iotanul (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sn-iotanul
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iota 6373 . 2 (℩𝑥𝜑) = {𝑤 ∣ {𝑥𝜑} = {𝑤}}
2 n0 4278 . . . 4 ( {𝑤 ∣ {𝑥𝜑} = {𝑤}} ≠ ∅ ↔ ∃𝑣 𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}})
3 eluni 4839 . . . . . 6 (𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}} ↔ ∃𝑦(𝑣𝑦𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}}))
4 vex 3427 . . . . . . . . . 10 𝑦 ∈ V
5 sneq 4568 . . . . . . . . . . 11 (𝑤 = 𝑦 → {𝑤} = {𝑦})
65eqeq2d 2750 . . . . . . . . . 10 (𝑤 = 𝑦 → ({𝑥𝜑} = {𝑤} ↔ {𝑥𝜑} = {𝑦}))
74, 6elab 3603 . . . . . . . . 9 (𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}} ↔ {𝑥𝜑} = {𝑦})
87biimpi 219 . . . . . . . 8 (𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}} → {𝑥𝜑} = {𝑦})
98adantl 485 . . . . . . 7 ((𝑣𝑦𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}}) → {𝑥𝜑} = {𝑦})
109eximi 1842 . . . . . 6 (∃𝑦(𝑣𝑦𝑦 ∈ {𝑤 ∣ {𝑥𝜑} = {𝑤}}) → ∃𝑦{𝑥𝜑} = {𝑦})
113, 10sylbi 220 . . . . 5 (𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}} → ∃𝑦{𝑥𝜑} = {𝑦})
1211exlimiv 1938 . . . 4 (∃𝑣 𝑣 {𝑤 ∣ {𝑥𝜑} = {𝑤}} → ∃𝑦{𝑥𝜑} = {𝑦})
132, 12sylbi 220 . . 3 ( {𝑤 ∣ {𝑥𝜑} = {𝑤}} ≠ ∅ → ∃𝑦{𝑥𝜑} = {𝑦})
1413necon1bi 2972 . 2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → {𝑤 ∣ {𝑥𝜑} = {𝑤}} = ∅)
151, 14syl5eq 2792 1 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2112  {cab 2716  wne 2943  c0 4254  {csn 4558   cuni 4836  cio 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-v 3425  df-dif 3887  df-nul 4255  df-sn 4559  df-uni 4837  df-iota 6373
This theorem is referenced by:  sn-iotassuni  40094  sn-iotaex  40095
  Copyright terms: Public domain W3C validator