Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotavallem Structured version   Visualization version   GIF version

Theorem iotavallem 40181
Description: Version of iotaval 6405 using df-iota 6389 instead of dfiota2 6390. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotavallem ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem iotavallem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-iota 6389 . 2 (℩𝑥𝜑) = {𝑤 ∣ {𝑥𝜑} = {𝑤}}
2 eqeq1 2744 . . . . 5 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} = {𝑤} ↔ {𝑦} = {𝑤}))
3 sneqbg 4780 . . . . . . 7 (𝑦 ∈ V → ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤))
43elv 3437 . . . . . 6 ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤)
5 equcom 2025 . . . . . 6 (𝑦 = 𝑤𝑤 = 𝑦)
64, 5bitri 274 . . . . 5 ({𝑦} = {𝑤} ↔ 𝑤 = 𝑦)
72, 6bitrdi 287 . . . 4 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} = {𝑤} ↔ 𝑤 = 𝑦))
87alrimiv 1934 . . 3 ({𝑥𝜑} = {𝑦} → ∀𝑤({𝑥𝜑} = {𝑤} ↔ 𝑤 = 𝑦))
9 uniabio 6404 . . 3 (∀𝑤({𝑥𝜑} = {𝑤} ↔ 𝑤 = 𝑦) → {𝑤 ∣ {𝑥𝜑} = {𝑤}} = 𝑦)
108, 9syl 17 . 2 ({𝑥𝜑} = {𝑦} → {𝑤 ∣ {𝑥𝜑} = {𝑤}} = 𝑦)
111, 10eqtrid 2792 1 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540   = wceq 1542  {cab 2717  Vcvv 3431  {csn 4567   cuni 4845  cio 6387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-un 3897  df-in 3899  df-ss 3909  df-sn 4568  df-pr 4570  df-uni 4846  df-iota 6389
This theorem is referenced by:  sn-iotauni  40182  sn-iotaval  40184  sn-iotaex  40186
  Copyright terms: Public domain W3C validator