MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpwg Structured version   Visualization version   GIF version

Theorem snelpwg 5442
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 5306. (Revised by BJ, 17-Jan-2025.)
Assertion
Ref Expression
snelpwg (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵))

Proof of Theorem snelpwg
StepHypRef Expression
1 snssg 4787 . 2 (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
2 snexg 5430 . . 3 (𝐴𝑉 → {𝐴} ∈ V)
3 elpwg 4605 . . 3 ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
42, 3syl 17 . 2 (𝐴𝑉 → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
51, 4bitr4d 282 1 (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2105  Vcvv 3473  wss 3948  𝒫 cpw 4602  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3953  df-in 3955  df-ss 3965  df-pw 4604  df-sn 4629  df-pr 4631
This theorem is referenced by:  snelpwi  5443  snelpw  5445
  Copyright terms: Public domain W3C validator