MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpwg Structured version   Visualization version   GIF version

Theorem snelpwg 5453
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 5312. (Revised by BJ, 17-Jan-2025.)
Assertion
Ref Expression
snelpwg (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵))

Proof of Theorem snelpwg
StepHypRef Expression
1 snssg 4788 . 2 (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
2 snexg 5441 . . 3 (𝐴𝑉 → {𝐴} ∈ V)
3 elpwg 4608 . . 3 ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
42, 3syl 17 . 2 (𝐴𝑉 → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
51, 4bitr4d 282 1 (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605  {csn 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980  df-pw 4607  df-sn 4632  df-pr 4634
This theorem is referenced by:  snelpwi  5454  snelpw  5456
  Copyright terms: Public domain W3C validator