![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snelpwg | Structured version Visualization version GIF version |
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 5312. (Revised by BJ, 17-Jan-2025.) |
Ref | Expression |
---|---|
snelpwg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 4788 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
2 | snexg 5441 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
3 | elpwg 4608 | . . 3 ⊢ ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
5 | 1, 4 | bitr4d 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-pw 4607 df-sn 4632 df-pr 4634 |
This theorem is referenced by: snelpwi 5454 snelpw 5456 |
Copyright terms: Public domain | W3C validator |