Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfaddlem2 Structured version   Visualization version   GIF version

Theorem smfaddlem2 45466
Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfaddlem2.x 𝑥𝜑
smfaddlem2.s (𝜑𝑆 ∈ SAlg)
smfaddlem2.a (𝜑𝐴𝑉)
smfaddlem2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfaddlem2.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfaddlem2.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfaddlem2.7 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfaddlem2.r (𝜑𝑅 ∈ ℝ)
smfaddlem2.k 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
Assertion
Ref Expression
smfaddlem2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Distinct variable groups:   𝐴,𝑝,𝑞,𝑥   𝐵,𝑝,𝑞   𝐶,𝑝,𝑞,𝑥   𝐷,𝑝,𝑞   𝐾,𝑞,𝑥   𝑅,𝑝,𝑞   𝑆,𝑝,𝑞   𝜑,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐾(𝑝)   𝑉(𝑥,𝑞,𝑝)

Proof of Theorem smfaddlem2
StepHypRef Expression
1 smfaddlem2.x . . 3 𝑥𝜑
2 smfaddlem2.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3 smfaddlem2.d . . 3 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
4 smfaddlem2.r . . 3 (𝜑𝑅 ∈ ℝ)
5 smfaddlem2.k . . 3 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
61, 2, 3, 4, 5smfaddlem1 45465 . 2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
7 smfaddlem2.s . . . 4 (𝜑𝑆 ∈ SAlg)
8 smfaddlem2.a . . . . 5 (𝜑𝐴𝑉)
9 elinel1 4194 . . . . . . 7 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
109adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
111, 10ssdf 43749 . . . . 5 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
128, 11ssexd 5323 . . . 4 (𝜑 → (𝐴𝐶) ∈ V)
13 eqid 2732 . . . 4 (𝑆t (𝐴𝐶)) = (𝑆t (𝐴𝐶))
147, 12, 13subsalsal 45061 . . 3 (𝜑 → (𝑆t (𝐴𝐶)) ∈ SAlg)
15 qct 44058 . . . 4 ℚ ≼ ω
1615a1i 11 . . 3 (𝜑 → ℚ ≼ ω)
1714adantr 481 . . . 4 ((𝜑𝑝 ∈ ℚ) → (𝑆t (𝐴𝐶)) ∈ SAlg)
18 qex 12941 . . . . . . 7 ℚ ∈ V
1918a1i 11 . . . . . 6 ((𝜑𝑝 ∈ ℚ) → ℚ ∈ V)
205a1i 11 . . . . . . . 8 (𝜑𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅}))
2118rabex 5331 . . . . . . . . 9 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V
2221a1i 11 . . . . . . . 8 ((𝜑𝑝 ∈ ℚ) → {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V)
2320, 22fvmpt2d 7008 . . . . . . 7 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
24 ssrab2 4076 . . . . . . 7 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ⊆ ℚ
2523, 24eqsstrdi 4035 . . . . . 6 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ⊆ ℚ)
26 ssdomg 8992 . . . . . 6 (ℚ ∈ V → ((𝐾𝑝) ⊆ ℚ → (𝐾𝑝) ≼ ℚ))
2719, 25, 26sylc 65 . . . . 5 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ≼ ℚ)
2815a1i 11 . . . . 5 ((𝜑𝑝 ∈ ℚ) → ℚ ≼ ω)
29 domtr 8999 . . . . 5 (((𝐾𝑝) ≼ ℚ ∧ ℚ ≼ ω) → (𝐾𝑝) ≼ ω)
3027, 28, 29syl2anc 584 . . . 4 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ≼ ω)
31 inrab 4305 . . . . 5 ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞}) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
3214ad2antrr 724 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑆t (𝐴𝐶)) ∈ SAlg)
33 nfv 1917 . . . . . . . . 9 𝑥 𝑝 ∈ ℚ
341, 33nfan 1902 . . . . . . . 8 𝑥(𝜑𝑝 ∈ ℚ)
35 nfv 1917 . . . . . . . 8 𝑥 𝑞 ∈ (𝐾𝑝)
3634, 35nfan 1902 . . . . . . 7 𝑥((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝))
377ad2antrr 724 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑆 ∈ SAlg)
3810, 2syldan 591 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
3938ad4ant14 750 . . . . . . 7 ((((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
40 smfaddlem2.m . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
417, 40, 11sssmfmpt 45452 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
4241ad2antrr 724 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
43 qre 12933 . . . . . . . 8 (𝑝 ∈ ℚ → 𝑝 ∈ ℝ)
4443ad2antlr 725 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑝 ∈ ℝ)
4536, 37, 39, 42, 44smfpimltmpt 45448 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∈ (𝑆t (𝐴𝐶)))
46 elinel2 4195 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
4746adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
4847, 3syldan 591 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
4948ad4ant14 750 . . . . . . 7 ((((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
50 smfaddlem2.7 . . . . . . . . 9 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
511, 47ssdf 43749 . . . . . . . . 9 (𝜑 → (𝐴𝐶) ⊆ 𝐶)
527, 50, 51sssmfmpt 45452 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
5352ad2antrr 724 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
5443ssriv 3985 . . . . . . . 8 ℚ ⊆ ℝ
5525sselda 3981 . . . . . . . 8 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ ℚ)
5654, 55sselid 3979 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ ℝ)
5736, 37, 49, 53, 56smfpimltmpt 45448 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞} ∈ (𝑆t (𝐴𝐶)))
5832, 45, 57salincld 45054 . . . . 5 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞}) ∈ (𝑆t (𝐴𝐶)))
5931, 58eqeltrrid 2838 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
6017, 30, 59saliuncl 45025 . . 3 ((𝜑𝑝 ∈ ℚ) → 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
6114, 16, 60saliuncl 45025 . 2 (𝜑 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
626, 61eqeltrd 2833 1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  {crab 3432  Vcvv 3474  cin 3946  wss 3947   ciun 4996   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7405  ωcom 7851  cdom 8933  cr 11105   + caddc 11109   < clt 11244  cq 12928  t crest 17362  SAlgcsalg 45010  SMblFncsmblfn 45397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cc 10426  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-acn 9933  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-ioo 13324  df-ico 13326  df-rest 17364  df-salg 45011  df-smblfn 45398
This theorem is referenced by:  smfadd  45467
  Copyright terms: Public domain W3C validator